

 [image: _images/ehrbase_logo.png]

Welcome to the EHRbase documentation!

For now, there is only the Release Notes.
We will add detailed documentation as soon as possible.

Contents:

	1. Release Notes

	2. Getting Started
	2.1. openEHR Introduction

	2.2. Step 1: Data Models

	2.3. Step 2: Upload a Template

	2.4. Step 3: Create an EHR

	2.5. Step 4: Load Data

	3. Development
	3.1. Developing

	3.2. Testing

	3.3. Deploying

	3.4. Docker Images

	3.5. Technical Documentation

	3.6. Security

	3.7. Admin API

	3.8. Status and Metrics

	3.9. Attribute-based Access Control

	4. SDK
	4.1. Guides

	4.2. Reference

	5. Load Testing
	5.1. Testehr

	5.2. Script execution

	6. FHIR Bridge
	6.1. Overview

	6.2. Installation

	6.3. Database for Audit Logs in FHIR Bridge

	6.4. Do the mapping

	6.5. Flows

	7. Terminology Validation
	7.1. Introduction

	7.2. Configuration

Indices and tables

	Index

	Module Index

	Search Page

1. Release Notes

The following pages show the release notes

2. Getting Started

Warning

WIP

This chapter aims to give an overview an “hello world” example for software developers
to build applications based on EHRbase and the openEHR specification. While we use
EHRbase as the backend, the example will actually run against every other conformant
openEHR implementation that implements the official openEHR REST API.

	2.1. openEHR Introduction

	2.2. Step 1: Data Models

	2.3. Step 2: Upload a Template
	2.3.1. Client Library

	2.4. Step 3: Create an EHR
	2.4.1. REST

	2.4.2. Client Library

	2.5. Step 4: Load Data
	2.5.1. EHRBase Client Library

	2.5.2. Flat Format

2.1. openEHR Introduction

Warning

WIP

openEHR is an open platform specification. From a practical perspective you can think
about it as an electronic health record that consists of a database that is wrapped with
a service layer. The database itself provides only a basic architecture and does
not define the clinical content. This is done in a separate modelling layer. Hence,
from a developer’s perspective, openEHR can be understood as a model-driven software
development approach based on an adaptive database that can consume new data definitions
at runtime. This allows to manage the high complexity of the medical domain.

As of now, openEHR defines the service access layer based on REST.
However, there could be other protocols used in the future as the underlying openEHR datamodel
is agnostic in terms of API definition. The following figure gives a high-level summary
of the approach:

[image: alternate text]
The above figure shows the basic concept of separating the clinical definitions on the left side,
from the technical implementation inside the platform (which is EHRbase in our case) on the right side.

Domain experts define the clinical information models (called Archetypes), which are re-usable models of
clinical concepts. Archetypes follow a formalism called Archetype Definition Language,
that allows to flexibly model clinical concepts. There are several tools that can be
used to create Archetypes in ADL 1.4:

	Archetype Editor [https://www.openehr.org/downloads/archetypeeditor/home]

	LinkEHR Editor [https://linkehr.veratech.es/]

	ADL Designer [https://tools.openehr.org/designer/] (web only)

The creation of Archetypes is a topic for itself and we will provide another tutorial. Note, that
normally system developers should not be too much concerned with the definition and management of
Archetypes, as this is the domain of medical information managers and medical professionals.

The goal of Archetypes is to provide standardized sets of data elements and their relations
to achieve defined patterns in structured medical documentation. Hence, Archetypes need a
strict government to fulfil their potential of enabling semantic interoperability. These models can
already contain references to clinical terminologies (e.g. LOINC or SNOMED CT) and
particular value sets.

The following image shows the mindmap representation of an Archetype to store data about a
blood pressure measurement:

[image: alternate text]
It is obvious that this model is very detailed. This is because Archetypes aim to capture the
requirements of different medical specialities. This means, that use-cases from a simple measurement
at the general practitioner as well as a detailed assessment through a cardiologist needs to be supported.
Normally, the full richness of the model will be reduced before usage in a real-world application.

The governance of Archetypes happens inside a domain model repository. The most commonly used tool is
the Clinical Knowledge Manager [https://openehr.org/ckm] (CKM)). For international standardization
efforts, the CKM is the first address to go to. As local needs cannot be avoided, there are also
national instances of the Clinical Knowledge Manager, for example in Germany [https://ckm.highmed.org] or
Norway [https://arketyper.no]

To represent actual clinical use-cases, elements from Archetypes need to be combined inside a
Template. You can think of Templates as data sets that can be used to capture data in a form. To create
a Template, there are currently two tools available:

	Template Designer [http://downloads.oceaninformatics.com/downloads/TemplateDesigner/]

	ADL Designer [https://tools.openehr.org/designer/] (web only)

We will soonly add another tutorial to give some more details about the creation of Templates.
The Template Designer and the ADL Designer have an export format called Operational Template (OPT).
This format is used to inject the use-case specific definitions (that are based on Archetypes)
into the openEHR platform (like EHRbase).

This can be done using the POST Template Endpoint [https://specifications.openehr.org/releases/ITS-REST/latest/definitions.html#definitions-adl-1.4-template-post]
of the openEHR REST API.

Now we can take a look at the clinical applications that are based on the openEHR platform. Here, the approaches
can differ. The challenge is that the openEHR Reference Model is quite technical a generic to provide optimal
handling for computation like validation, storage and querying.

Hence, intermediate formats are often used to make life simpler for developers. In the case of EHRbase, we use the OPT
files to enable data-driven development. In the EHRbase Client Library [https://github.com/ehrbase/ehrbase_client_library/]
OPTs are used to automatically generate Java classes that can be used to easily build data instances. A data instance in
openEHR is called a composition.

To allow easier handling, classes are automatically created from the OPT and are much easier for humans to handle. Once data is created, it
is transformed to the canonical formats and sent to the openEHR server to a patient’s electronic health record. The composition can
either be sent alone or as part of a bigger transaction, called a Contribution, which can contain different operations
on several objects inside the electronic health record, including compositions and folders.

On the server-side, it is checked that all elements inside the composition are valid according to the constraints
that were defined in the respective Archetypes and the Template. Once the data has passed all tests, it is permanently
stored within a patient’s electronic health record. Normally, data can only be updated or logically deleted (in contrast to a physical delete)
as electronic health records require a full audit trail about the patient data.

Once the data is stored, it can be retrieved through the openEHR REST API. The most common use-case is to fill user interfaces, for
example to plot a list of the latest medications or lab values. This can be done using the Archetype Query Language, a model-based
query formalism that only relies on definitions from the Archetypes.

2.2. Step 1: Data Models

Warning

WIP

Now, after we got an overview, it’s time to put our hands on the tools. Though,
if you want to skip this part of the tutorial to directly work with EHRbase,
you can get the example files here.

As a first step, we need to obtain the information models. As mentioned in the introduction,
the Clinical Knowledge Managers are our first address. To download all Archetypes, go to
the International Clinical Knowledge Manager [https://openehr.org/ckm]

[image: alternate text]
On the left side, you can find different categories of Archetypes, for example observations that
contain data models like blood pressure, body temperature or Glasgow coma scale. For our tutorial,
we want to get a copy of the archetypes from the Clinical Knowledge Manager.

Under Archetypes (marked in the image), you will find a function called Bulk Export.

[image: alternate text]
You can choose if the export should only contain Archetypes from a selected project or all and depending
on its lifecycle status (published, draft etc.). Choose to get the latest published revision and use ADL (Archetype Definition Language)
as export format. Clicking Bulk Export will then download a zip folder containing all Archetypes meeting the criteria.

Next, install the Template Designer [http://downloads.oceaninformatics.com/downloads/TemplateDesigner/]. The process should
be straight forward (At least on Windows). Alternatively, the ADL Designer [https://tools.openehr.org/designer/]
can also be used to create Templates by following this guide [https://openehr.atlassian.net/wiki/spaces/healthmod/pages/415465475/Archetype+Designer+-+template+building+manual].

Open the Template Designer. The first step is to configure a Knowledge Repository.

[image: alternate text]
Click on Edit Repository List

[image: alternate text]

Set Archetype Files to the path where you unzipped the Archetypes you obtained through the Bulk Export.
When you then select your new repository, the Archetypes should appear on the right window:

[image: alternate text]

Now you can start to create your own Template. Typically, a Template needs an Archetype of type Composition as the root element.
The Composition Archetypes provide the basic structure for the Template through Slots (which can be filled with Archetypes) and
predefined metadata elements. In our example, we us the Self Monitoring Archetype. Just drag and drop the Archetype from the
right panel to the left panel. Additionally, we add a blood pressure Archetype. Next, you can define further constraints on the
particular elements, for example defining their cardinality, remove single elements, add terminology bindings etc.

We could also fill the slot within the blood pressure Archetype with a device Archetype to collect information about the device used
for the measurement.

[image: alternate text]

Finally, give your Template a name. Then you can Export the Template in the Operational Template (OPT) Format (File –> Export –> As Operational Template).
This is all you need to upload your Template to EHRbase or any other openEHR server.

2.3. Step 2: Upload a Template

After we created the Template, it’s time to put upload it to EHRbase. The data format that is uploaded to an openEHR server
like EHRbase is called an Operational Template (OPT-File). You can find an example of an OPT here.

Please see https://specifications.openehr.org/releases/ITS-REST/latest/definitions.html#definitions-adl-1.4-template-post
for the REST endpoint that you can use in EHRbase to POST a template. On a local instance of EHRbase, the URL should
be like localhost:8080/ehrbase/rest/openehr/v1/definition/template/adl1.4

Copy the content of the OPT file into the body of the REST call. Make sure that the Content-Type attribute is set to application/XML.
After the successful call, you should receive a 200 response code.

2.3.1. Client Library

As an alternative to directly using the REST API, the EHRbase Client Library provides functionality to provide a Template.

OPERATIONALTEMPLATE template = TemplateDocument.Factory.parse(OperationalTemplateTestData.BLOOD_PRESSURE_SIMPLE.getStream()).getTemplate();
String templateId = "ehrbase_blood_pressure_simple.de.v" + RandomStringUtils.randomNumeric(10);
template.getTemplateId().setValue(templateId);
String actual = new DefaultRestTemplateEndpoint(cut).upload(template);

2.4. Step 3: Create an EHR

Warning

WIP

When you start EHRbase from scratch, you will find an empty electronic health record. OpenEHR has a patient-centric architecture.
This means that all clinical information inside the database are associated with the EHR of a patient. Hence, the first thing to
get started is the creation of an EHR for a patient.

Beware that demographic data of a patient (name, date of birth etc.) are not stored inside an openEHR system by design
to ensure a clear separation from the clinical data. Hence, patients are not directly represented in openEHR
but their electronic health record. In many cases, a separate demographics service (for example an IHE PIX/PDQ actor,
a FHIR Server, an openEHR Demographics Repository or a custom solution) is used.

To create a new EHR, you can either directly use the openEHR REST API or a function within the EHRbase Client Library
that encapsulates the REST call.

The REST API https://specifications.openehr.org/releases/ITS-REST/latest/ehr.html#ehr-ehr-post

2.4.1. REST

In this tutorial, we assume that we have a new patient coming to our organization. We simply make
a REST call with an empty body.

{
 "system_id": {
 "value": "d60e2348-b083-48ce-93b9-916cef1d3a5a"
 },
 "ehr_id": {
 "value": "7d44b88c-4199-4bad-97dc-d78268e01398"
 },
 "ehr_status": {
 "id": {
 "_type": "OBJECT_VERSION_ID",
 "value": "8849182c-82ad-4088-a07f-48ead4180515::openEHRSys.example.com::1"
 },
 "namespace": "local",
 "type": "EHR_STATUS"
 },
 "ehr_access": {
 "id": {
 "_type": "OBJECT_VERSION_ID",
 "value": "59a8d0ac-140e-4feb-b2d6-af99f8e68af8::openEHRSys.example.com::1"
 },
 "namespace": "local",
 "type": "EHR_ACCESS"
 },
 "time_created": {
 "value": "2015-01-20T19:30:22.765+01:00"
 }
}

In the result, you should find the EHR ID. This ID will be needed for further operations.

"ehr_id": {
 "value": "7d44b88c-4199-4bad-97dc-d78268e01398"
 }

2.4.2. Client Library

In the EHRbase Client Library, creating a new EHR object is straight forward:

openEhrClient = DefaultRestClientTestHelper.setupDefaultRestClient();
EhrEndpoint ehrEndpoint = openEhrClient.ehrEndpoint();
UUID ehr = ehrEndpoint.createEhr();

2.5. Step 4: Load Data

Warning

WIP

Step number 4 brings us to the core functionality of openEHR: creating and storing clinical data! For this purpose,
we will re-use the Template that we created in step 1. As data instances in openEHR are stored as instances of its
Reference Model, it’s rather difficult to read for humans. However, this level of abstraction is needed inside the
backend to achieve high scalability.

For application developers, more accessible formats are needed. There are two options: The EHRBase Client Library and using Flat Forms.

2.5.1. EHRBase Client Library

The EHRbase Client Library allows to use a Template
(as OPT) as input and automatically create java classes. These can then be used to create the data. We explain this
processes step by step. We assume that you have successfully built the Client Library.

Firstly, you need to create the Java classes from the OPT. This could look like as follows:

java -jar client-library-0.2.0.jar -opt "C:\Users\MyUser\Desktop\HiGHmed_Cardio_Monitoring_v1.opt" -out "C:\openEHR SDK\ehrbase_client_library\src\test\java\org\ehrbase\client\classgenerator" -package ""

You should find a file named HiGHmed_Cardio_Monitoring_v1.java inside your project structure that should look like this:

...
@Entity
@Archetype("openEHR-EHR-COMPOSITION.self_monitoring.v0")
@Template("HiGHmed_Cardio_Monitoring.v1")
public class HighmedCardioMonitoringV1 {
 @Path("/context/end_time|value")
 private TemporalAccessor endTimeValue;

 @Path("/language")
 private CodePhrase language;

 @Path("/context/health_care_facility")
 private PartyIdentified healthCareFacility;

 @Path("/composer|external_ref")
 private PartyRef composerExternalref;

...

Next, we can create a new test function like this:

 public static HighmedCardioMonitoringV1 buildCardioExample(){

 //Create the composition instance and add metadata
 HighmedCardioMonitoringV1 cardioMonitoring = new HighmedCardioMonitoringV1();
 cardioMonitoring.setLanguage(new CodePhrase(new TerminologyId("ISO_639-1"), "de"));
 cardioMonitoring.setTerritory(new CodePhrase(new TerminologyId("ISO_3166-1"), "DE"));
 cardioMonitoring.setSettingDefiningcode(new CodePhrase(new TerminologyId("openehr"), "229"));

 //Create a blood pressure object
 HighmedCardioMonitoringV1.Blutdruck bloodpressure = new HighmedCardioMonitoringV1.Blutdruck();

 //Add data for systolic and diastolic blood pressure
 bloodpressure.setSystolischMagnitude(160d);
 bloodpressure.setSystolischUnits("mm[HG]");

 bloodpressure.setDiastolischMagnitude(120d);
 bloodpressure.setDiastolischUnits("mm[HG]");

 //Add data for a medical device
 HighmedCardioMonitoringV1.Blutdruck.MedizingerT geraet = new HighmedCardioMonitoringV1.Blutdruck.MedizingerT();
 geraet.setBeschreibungValue("OMRON Sensor");

 DvIdentifier identifier = new DvIdentifier();
 identifier.setId("4567879799");
 geraet.setEindeutigeIdentifikationsnummerId(identifier);

 List<HighmedCardioMonitoringV1.Blutdruck> bpList = new ArrayList<>();
 bpList.add(bloodpressure);

 cardioMonitoring.setBlutdruck(bpList);

 return cardioMonitoring;
}

Finally, the composition can be sent to the openEHR server:

CompositionEndpoint compositionEndpoint = openEhrClient.compositionEndpoint(ehr);
UUID compositionId = compositionEndpoint.saveCompositionEntity(highmedCardioMonitoringV1);

2.5.2. Flat Format

Another alternative to using the Client Library is to use a Simplified Data Template [https://specifications.openehr.org/releases/ITS-REST/latest/simplified_data_template.html] also known as the “Flat format”.
In particular, we’ll be looking at the simplified IM Simplified Data template (simSDT) which is based on the web template format created by Marand for the Better platform.
The first thing you need is to get the Web Template version of the Template. The ADL Designer tool allows you to export templates as Web Templates.
An example of a simple Body Temperature Web Template (borrowed from EhrScape Examples [https://www.ehrscape.com/examples.html]) would look like this:

[image: alternate text]

Next, we create the composition from the Web Template as a simple key-value pair with the keys being a path
obtained by concatenating the id of each level delimited by a /. The last segment is the suffix and uses | as a delimiter.

For example, in the above image all the id to be concatenated are highlighted in red.

So the paths built from the above example would look like:

vital_signs/body_temperature/any_event/temperature|magnitude
vital_signs/body_temperature/any_event/temperature|unit

The value of these above keys would be the actual data. Representing this in JSON would look like:

{
"vital_signs/body_temperature/any_event/temperature|magnitude": 92,
"vital_signs/body_temperature/any_event/temperature|unit": "°C"
}

However, since the cardinality of the body_temperature and any_event elements are -1 it means that
the composition can have an infinite number of body_temperature and body_temperature recorded in the same composition.
To resolve this, we have to index the path like so:
vital_signs/body_temperature:0/any_event:0/temperature|magnitude
vital_signs/body_temperature:0/any_event:0/temperature|unit

With these paths, and more context data, a composition with multiple recordings of body temperature will look like:

{
"ctx/time": "2014-03-19T13:10:00.000Z",
"ctx/language": "en",
"ctx/territory": "CA",
"vital_signs/body_temperature:0/any_event:0/time": "2014-03-19T13:10:00.000Z",
"vital_signs/body_temperature:0/any_event:0/temperature|magnitude": 37.1,
"vital_signs/body_temperature:0/any_event:0/temperature|unit": "°C",
"vital_signs/body_temperature:0/any_event:1/time": "2014-03-19T16:33:00.000Z",
"vital_signs/body_temperature:0/any_event:1/temperature|magnitude": 37.7,
"vital_signs/body_temperature:0/any_event:1/temperature|unit": "°C"
}

The API endpoints for the Flat Format is different from the normal composition API. More details can be found in this Postman Collection [https://discourse.openehr.org/uploads/short-url/seVAphaSVEz2c22d2Ta1VthWX4X.json]. To use the Flat Format, the latest version of EHRBase should be used.
More information can be found here [https://discourse.openehr.org/t/software-development-kit-for-app-development/790/4].

Congratulations, you stored your first clinical data inside EHRbase! Next, we will take a look how
we can retrieve the data using the Archetype Query Language.

3. Development

This section gives information about the Development of EHRbase and
documents the software in detail.

	3.1. Developing

	3.2. Testing
	3.2.1. EHRbase Integration Tests with Robot Framework
	3.2.1.1. Prerequisites

	3.2.1.2. Test Environment & SUT

	3.2.1.3. Test Execution (under Linux, Mac & Windows)
	3.2.1.3.1. With Robot Command

	3.2.1.3.2. With Shell Script

	3.2.1.3.3. Example Content Of Shell Script (run_local_tests.sh)

	3.2.1.4. Local SUT / Manually Controlled SUT

	3.2.1.5. Remote SUT / OR how to execute the tests against other systems
	3.2.1.5.1. Run all tests at one (not recommended)

	3.2.1.5.2. Run single test suites, one by one (recommended)

	3.2.1.6. Execution Control - Test Suites & Tags

	3.2.1.7. CI/CD Pipeline (on CircleCI)

	3.2.1.8. Errors And Warnings

	3.2.1.9. Auto-Generated Test Report Summary And Detailed Log

	3.2.2. RESTORE KEYCLOAK FROM PREVIOUSLY EXPORTED CONFIGURATION

	3.2.3. EXPORT COMPLETE KEYCLOAK CONFIGURATION

	3.2.4. CI/CD
	3.2.4.1. Continuous Integration

	3.2.4.2. Pipeline workflow 1/3 - build-and-test

	3.2.4.3. Pipeline workflow 2/3 - release

	3.2.4.4. Pipeline workflow 3/3 - synced-feature-check

	3.3. Deploying

	3.4. Docker Images
	3.4.1. EHRbase Docker Image
	3.4.1.1. Build EHRbase Image
	3.4.1.1.1. Build Image From Dockerfile

	3.4.1.1.2. Why To Build Own Image?

	3.4.1.2. Use EHRbase Image
	3.4.1.2.1. Run EHRbase in Docker

	3.4.1.2.2. Run EHRbase + DB with Docker-Compose

	3.4.1.2.3. Docker environment examples

	3.4.1.3. Publish EHRbase Image
	3.4.1.3.1. Docker Hub Autobuilds

	3.4.1.3.2. Docker Hub Configuration

	3.4.2. EHRbase DB Docker Image
	3.4.2.1. Build DB Image
	3.4.2.1.1. Build Image From Dockerfile

	3.4.2.2. Use DB Image
	3.4.2.2.1. Run DB with default parameters

	3.4.2.2.2. Customization

	3.5. Technical Documentation
	3.5.1. Overview

	3.5.2. Service Layer
	3.5.2.1. General

	3.5.2.2. openEHR Platform Abstract Service Model
	3.5.2.2.1. EHR

	3.5.2.2.2. EHR_STATUS

	3.5.2.2.3. DIRECTORY

	3.5.2.2.4. COMPOSITION

	3.5.2.2.5. CONTRIBUTION

	3.5.3. New Contain Clause Resolution Strategy

	3.5.4. Backgroud
	3.5.4.1. Previous Approach

	3.5.4.2. New Approach
	3.5.4.2.1. Assumptions

	3.5.4.2.2. Objectives

	3.5.4.2.3. Technical Approach

	3.6. Security

	3.7. Admin API
	3.7.1. Security
	3.7.1.1. General

	3.7.1.2. Role based access control

	3.7.1.3. Security related response codes

	3.7.2. /admin/ehr
	3.7.2.1. DELETE /admin/ehr/{:ehr_id}
	3.7.2.1.1. Request format

	3.7.2.1.2. Response format

	3.7.3. /admin/{:ehr_id}/composition
	3.7.3.1. DELETE /admin/{:ehr_id}/composition/{:composition_id}
	3.7.3.1.1. Request format

	3.7.3.1.2. Response format

	3.7.4. /admin/{:ehr_id}/contribution
	3.7.4.1. DELETE /admin/{:ehr_id}/contribution/{:contribution_id}
	3.7.4.1.1. Request format

	3.7.4.1.2. Response format

	3.7.5. /admin/{:ehr_id}/directory
	3.7.5.1. DELETE /admin/{:ehr_id}/directory/{:folder_id}
	3.7.5.1.1. Request format

	3.7.5.1.2. Response format

	3.7.6. /admin/template
	3.7.6.1. PUT /admin/template/:template_id
	3.7.6.1.1. Request format

	3.7.6.1.2. Response format

	3.7.6.2. DELETE /admin/template/:template_id
	3.7.6.2.1. Request format

	3.7.6.2.2. Response format

	3.7.6.3. DELETE /admin/template/all
	3.7.6.3.1. Request format

	3.7.6.3.2. Response format

	3.8. Status and Metrics
	3.8.1. Security

	3.8.2. Usage

	3.8.3. /management/env

	3.8.4. /management/health

	3.8.5. /management/info

	3.8.6. /management/metrics

	3.8.7. /management/prometheus

	3.9. Attribute-based Access Control
	3.9.1. Concept

	3.9.2. Configuration

	3.9.3. Detailed endpoint overview
	3.9.3.1. EHR

	3.9.3.2. EHR Status

	3.9.3.3. Composition

	3.9.3.4. Contribution

	3.9.3.5. Query

3.1. Developing

Warning

WIP

For the moment, please see the EHRbase GitHub repository [https://github.com/ehrbase/ehrbase]
for developing information, issue tracker and the source code.

3.2. Testing

3.2.1. EHRbase Integration Tests with Robot Framework

	Prerequisites

	Test Environment & SUT

	Test Execution (under Linux, Mac & Windows)

	With Robot Command

	With Shell Script

	Example Content Of Shell Script (run_local_tests.sh)

	Local SUT / Manually Controlled SUT

	Usage examples:

	Remote SUT / OR how to execute the tests against other systems

	Preconditions

	Customize your configuration

	Execute test against EHRSCAPE

	Run all tests at one (**not** recommended)

	Run single test suites, one by one (recommended)

	Execution Control - Test Suites & Tags

	CI/CD Pipeline (on CircleCI)

	Errors And Warnings

	Auto-Generated Test Report Summary And Detailed Log

3.2.1.1. Prerequisites

	Docker, Java 11 & Maven, Python 3.7+ & Pip are installed

	Robot Framework & dependencies are installed (pip install -r requirements.txt)

	Build artefacts created (mvn package –> application/target/application-x.xx.x.jar)

	⚠️ No DB / no server running!

	⚠️ ports 8080 and 5432 not used by any other application! (check it w/ netstat -tulpn)

3.2.1.2. Test Environment & SUT

The test environment of this project consists of three main parts

1) EHRbase OpenEHR server (application-*.jar)

2) PostgreSQL database

3) OS with Docker, Java runtime, Python runtime, Robot Framework (generic test automation framework)

Let’s refer to the first two parts as the SUT (system under test). The tests are implemented in a way that by default Robot Framework (RF) will take control of the SUT. That means to execute the tests locally all you have to do is to ensure your host machine meets required prerequisites. RF will take care of properly starting up, restarting and shutting down SUT as it is required for test execution. There is an option to hand over control of SUT to you, though - described in section Manually Controlled SUT.

3.2.1.3. Test Execution (under Linux, Mac & Windows)

In general tests are executed by 1) cd into tests/ folder and 2) call the ``robot``** command with the folder wich contains the test suites as argument. Alternatively you can use prepared shell script: **run_local_tests.sh.

3.2.1.3.1. With Robot Command

The following examples will run all test-cases that are inside robot/ folder

1) from project's root
cd tests/

2) call robot command
robot robot/ # Linux
robot ./robot/ # Mac OS
robot .\robot # Windows

Everything between robot command and the last argument are commandline option to fine control test execution and the processing of test results. Examples:

QUICK COPY/PASTE EXAMPLES TO RUN ONLY A SPECIFIC TEST-SUITE

robot -i composition -d results --noncritical not-ready -L TRACE robot/COMPOSITION_TESTS/
robot -i contribution -d results --noncritical not-ready -L TRACE robot/CONTRIBUTION_TESTS/
robot -i directory -d results --noncritical not-ready -L TRACE robot/DIRECTORY_TESTS/
robot -i ehr_service -d results --noncritical not-ready -L TRACE robot/EHR_SERVICE_TESTS/
robot -i ehr_status -d results --noncritical not-ready -L TRACE robot/EHR_STATUS_TESTS/
robot -i knowledge -d results --noncritical not-ready -L TRACE robot/KNOWLEDGE_TESTS/
robot -i aqlANDempty_db -d results --noncritical not-ready -L TRACE robot/QUERY_SERVICE_TESTS/
robot -i aqlANDloaded_db -d results --noncritical not-ready -L TRACE robot/QUERY_SERVICE_TESTS/

3.2.1.3.2. With Shell Script

Use shell script to run all available tests at once or use it as a reference to see which command line options [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#using-command-line-options] are available to the robot command. Examples below demonstrate it’s usage:

Linux
. run_local_tests.sh

Mac OS
./run_local_tests.hs

Windows
robot -d results --noncritical not-ready -L TRACE robot/

(No script there yet. TODO: create a proper .bat file)

3.2.1.3.3. Example Content Of Shell Script (run_local_tests.sh)

robot --include contribution \
 --exclude TODO -e future -e obsolete -e libtest \
 --loglevel TRACE \
 --noncritical not-ready \
 --flattenkeywords for \
 --flattenkeywords foritem \
 --flattenkeywords name:_resources.* \
 --outputdir results \
 --name CONTRIBUTION \
 robot/CONTRIBUTION_TESTS/

3.2.1.4. Local SUT / Manually Controlled SUT

In case you don’t want Robot to start up and shut down server and database for you - i.e. during local development iterations - there is a command line option (-v nodocker) to turn this off. This option should be used with some precaution, though!

⚠️

Test Suite Setups and Teardowns will NOT be orchestrated by Robot any more. This can lead to issues when trying to run ALL tests at once (i.e. with robot robot/) - tests may impact each other and fail. Thus you will have to pass at least a test suite folder as argument or limit test selection by using tags to avoid this (see section below). Moreover

	you have to start the server with cache DISABLED (--cache.enabled=false)

	you have to ensure your server configuration applies to Robot’s DEV configuration (see tests/robot/_resources/suite_settings.robot)

	you have to ensure your DB configuration applies to the one described in main README

	you have to restart server and rollback/reset database properly

	when in doubt about your results, compare them with results in CI pipeline

	YOU HAVE BEEN WARNED!

⚠️

Usage Examples:

robot --variable nodocker:true robot/TEST_SUITE_FOLDER

short variant
robot -v nodocker robot/TEST_SUITE_FOLDER
robot -v nodocker -i get_ehr robot/EHR_SERVICE_TESTS

Robot will print proper warning in console if it can’t connect to server or database:

[WARN] //
[WARN] // ///
[WARN] // YOU HAVE CHOSEN TO START YOUR OWN TEST ENVIRONMENT! ///
[WARN] // BUT IT IS NOT AVAILABLE OR IS NOT SET UP PROPERLY! ///
[WARN] // ///
[WARN] //
[WARN]
[WARN] [check "Manually Controlled SUT" in test README]
[WARN] [https://github.com/ehrbase/ehrbase/blob/develop/tests/README.md#manually-sut]
[WARN]
[ERROR] ABORTING EXECUTION DUE TO TEST ENVIRONMENT ISSUES:
[ERROR] Could not connect to server!
[ERROR] Could not connect to database!

3.2.1.5. Remote SUT / OR how to execute the tests against other systems

All integration tests in this repository can be executed against other (possiblty remotely accessible) OpenEHR conform systems (other than EHRbase). Here we will demonstrate how to run the test against your own remote system. We’ll use EHRSCAPE as an example configuration. If you don’t have access to EHRSCAPE you’ll have to adjust related parts to your needs.

Preconditions

	the following environment variables have to be available:

BASIC_AUTH (basic auth string for EHRSCAPE, i.e.: export BASIC_AUTH="Basic abc...")
EHRSCAPE_USER
EHRSCAPE_PASSWORD

	Python 3.7+ installed

	Test dependencies installed

cd tests
pip install -r requirements.txt

Customize your configuration

Open tests/robot/_resources/suite_settings.robot and adjust the following part to your needs if you don’t have access to EHRSCAPE. If you do any changes here, remember to adjust your environment variables in step 1)

&{EHRSCAPE} URL=https://rest.ehrscape.com/rest/openehr/v1
... HEARTBEAT=https://rest.ehrscape.com/
... CREDENTIALS=@{scapecreds}
... AUTH={"Authorization": "%{BASIC_AUTH}"}
... NODENAME=piri.ehrscape.com
... CONTROL=NONE
@{scapecreds} %{EHRSCAPE_USER} %{EHRSCAPE_PASSWORD}

Execute test against EHRSCAPE

The only difference in contrast to normal execution is that you now want to specify that EHRSCAPE configuration from suite_settings.robot should be used. This is done by setting SUT variable to EHRSCAPE which you can achieve by passing -v SUT:EHRSCAPE when calling robot. Check examples below.

3.2.1.5.1. Run all tests at one (not recommended)

This is not recommend because it may take from 30 to 60 minutes and makes it harder to analyse the results.

robot -v SUT:EHRSCAPE -e future -e circleci -e TODO -e obsolete -e libtest -d results -L TRACE --noncritical not-ready robot/

3.2.1.5.2. Run single test suites, one by one (recommended)

Execute the test suite that you are interested in by copy&pasting one of the lines below, then analyse the results of that test suite.

Best practice is also to reset your system under test to a clear state before executing the next test suite.

robot -v SUT:EHRSCAPE -d results/composition -e future -e circleci -e TODO -e obsolete -e libtest -L TRACE --noncritical not-ready --name COMPO robot/COMPOSITION_TESTS
robot -v SUT:EHRSCAPE -d results/contribution -e future -e circleci -e TODO -e obsolete -e libtest -L TRACE --noncritical not-ready --name CONTRI robot/CONTRIBUTION_TESTS
robot -v SUT:EHRSCAPE -d results/directory -e future -e circleci -e TODO -e obsolete -e libtest -L TRACE --noncritical not-ready --name FOLDER robot/DIRECTORY_TESTS
robot -v SUT:EHRSCAPE -d results/ehr_service -e future -e circleci -e TODO -e obsolete -e libtest -L TRACE --noncritical not-ready --name EHRSERVICE robot/EHR_SERVICE_TESTS
robot -v SUT:EHRSCAPE -d results/ehr_status -e future -e circleci -e TODO -e obsolete -e libtest -L TRACE --noncritical not-ready --name EHRSTATUS robot/EHR_STATUS_TESTS
robot -v SUT:EHRSCAPE -d results/knowledge -e future -e circleci -e TODO -e obsolete -e libtest -L TRACE --noncritical not-ready --name KNOWLEDGE robot/KNOWLEDGE_TESTS
robot -v SUT:EHRSCAPE -d results/aql_1 -e future -e circleci -e TODO -e obsolete -e libtest -L TRACE --noncritical not-ready --name "QUERY empty_db" -i empty_db robot/QUERY_SERVICE_TESTS
robot -v SUT:EHRSCAPE -d results/aql_2 -e future -e circleci -e TODO -e obsolete -e libtest -L TRACE --noncritical not-ready --name "QUERY SMOKE" -i SMOKE robot/QUERY_SERVICE_TESTS
robot -v SUT:EHRSCAPE -d results/aql_3 -e future -e circleci -e TODO -e obsolete -e libtest -L TRACE --noncritical not-ready --name "QUERY loaded_db" -i loaded_db robot/QUERY_SERVICE_TESTS

3.2.1.6. Execution Control - Test Suites & Tags

Execution of all integration tests takes about 30 minutes (on a fast dev machine). To avoid waiting for all results you can specify exactly which test-suite or even which subset of it you want to execute. There are seven test-suites to choose from by passing proper TAG to robot command via the --include (or short -i) option:

	TEST SUITE

	SUPER TAG

	SUB TAG(s)

	EXAMPLE(s)

	COMPOSITION_TESTS

	composition

	json, json1, json2,

 3.3. Deploying

3.3. Deploying

Warning

WIP

For the moment, please see the EHRbase GitHub repository [https://github.com/ehrbase/ehrbase]
for developing information, issue tracker and the source code.

 3.4. Docker Images

3.4. Docker Images

[image: Docker Logo]
This part of the documentation explains how to use EHRbase from a Docker container and/or how to create your own EHRbase and PostgreSQL DB Docker image.

	3.4.1. EHRbase Docker Image
	3.4.1.1. Build EHRbase Image
	3.4.1.1.1. Build Image From Dockerfile

	3.4.1.1.2. Why To Build Own Image?

	3.4.1.2. Use EHRbase Image
	3.4.1.2.1. Run EHRbase in Docker

	3.4.1.2.2. Run EHRbase + DB with Docker-Compose

	3.4.1.2.3. Docker environment examples
	3.4.1.2.3.1. Use BASIC auth

	3.4.1.2.3.2. Use OAuth2

	3.4.1.2.3.3. Use OAuth2 and Attribute-based Access Control

	3.4.1.3. Publish EHRbase Image
	3.4.1.3.1. Docker Hub Autobuilds

	3.4.1.3.2. Docker Hub Configuration

	3.4.2. EHRbase DB Docker Image
	3.4.2.1. Build DB Image
	3.4.2.1.1. Build Image From Dockerfile

	3.4.2.2. Use DB Image
	3.4.2.2.1. Run DB with default parameters

	3.4.2.2.2. Customization

 3.4.1. EHRbase Docker Image

3.4.1. EHRbase Docker Image

This part of the documentation explains how to use EHRbase from a Docker container and/or how to create your own EHRbase Docker image.

	3.4.1.1. Build EHRbase Image
	3.4.1.1.1. Build Image From Dockerfile

	3.4.1.1.2. Why To Build Own Image?

	3.4.1.2. Use EHRbase Image
	3.4.1.2.1. Run EHRbase in Docker

	3.4.1.2.2. Run EHRbase + DB with Docker-Compose

	3.4.1.2.3. Docker environment examples
	3.4.1.2.3.1. Use BASIC auth

	3.4.1.2.3.2. Use OAuth2

	3.4.1.2.3.3. Use OAuth2 and Attribute-based Access Control

	3.4.1.3. Publish EHRbase Image
	3.4.1.3.1. Docker Hub Autobuilds

	3.4.1.3.2. Docker Hub Configuration

 3.4.1.1. Build EHRbase Image

3.4.1.1. Build EHRbase Image

This part of the documentation explains how to build a Docker Image of EHRbase Server Application locally from Dockerfile in the Git repository.

3.4.1.1.1. Build Image From Dockerfile

EHRbase’s Github repository contains a Dockerfile [https://github.com/ehrbase/ehrbase/blob/develop/Dockerfile] which you can use to build your custom Docker image from. Follow steps below to build your own Docker Image (with default EHRbase settings):

git clone https://github.com/ehrbase/ehrbase.git
cd ehrbase
docker build -t give-it-a-name . # don't foget the `.` at the end of the command!!!
docker image ls # you should be able to see the image you just created

3.4.1.1.2. Why To Build Own Image?

EHRbase’s Dockerfile defines some environent variables with default values which will be active when you run a container from created Docker image. For example when you run the following command

docker run ehrbase/ehrbase

the running Docker container will have environent variables with default values as shown in code snippet from related part of Dockerfile below:

...

ARG DB_URL=jdbc:postgresql://ehrdb:5432/ehrbase
ARG DB_USER="ehrbase"
ARG DB_PASS="ehrbase"
ARG SERVER_NODENAME=docker.ehrbase.org

ENV EHRBASE_VERSION=${EHRBASE_VERSION}
ENV DB_USER=$DB_USER
ENV DB_PASS=$DB_PASS
ENV DB_URL=$DB_URL
ENV SERVER_NODENAME=$SERVER_NODENAME
ENV SECURITY_AUTHTYPE="NONE"
...

The values of all ARG(s) can be overwritten during image build time to adjust default (run time) behaviour of your custom Docker image. Use –build-arg ARG_name=value to override default values when building your image. See example below:

docker build --build-arg DB_URL=your-db-url \
 --build-arg DB_USER=your-db-user \
 --build-arg DB_PASS=your-db-pass \
 --build-arg SERVER_NODENAME=your-system-name \
 -t give-your-image-a-name:and-tag .

In addition to overriding default ENV values during build time it is also possible to override ENV values and even add new ENVs to a container’s run time. Check next example (which assumes you pulled or created an image named ehrbase/ehrbase):

docker run -e DB_URL=jdbc:postgresql://ehrdb:5432/ehrbase \
 -e DB_USER=foouser \
 -e DB_PASS=foopass \
 -e SERVER_NODENAME=what.ever.org \
 ehrbase/ehrbase

 3.4.1.2. Use EHRbase Image

3.4.1.2. Use EHRbase Image

This part of the documentation explains how to run EHRbase as a Docker Container created from the image in previous steps.

3.4.1.2.1. Run EHRbase in Docker

Note

Remember: EHRbase requires a properly configured and running PostgreSQL DB to work.
Make sure to set this up first before you try run EHRbase.

To run EHRbase in a Docker Container first pull the official Docker image from Docker Hub:

docker pull ehrbase/ehrbase

OR

build your own image form Dockerfile:

git clone https://github.com/ehrbase/ehrbase.git
cd ehrbase
docker build -t myehrbase/ehrbase .
docker image ls

THEN use the docker run command adjusting parameters to your needs to change Container’s default behaviour.

Note

Remember: Container’s default behaviour is set during Docker image build time.

docker run -e DB_URL=jdbc:postgresql://ehrdb:5432/ehrbase \
 -e DB_USER=foouser \
 -e DB_PASS=foopass \
 -e SERVER_NODENAME=what.ever.org \
 -p 8080:8080 \
 ehrbase/ehrbase

	Parameter

	Usage

	Example

	DB_URL

	Database URL. Must point to the running database server.

	jdbc:postgresql://ehrdb:5432/ehrbase

	DB_USER

	Database user configured for the ehr schema.

	ehrbase

	DB_PASS

	DB user password

	ehrbase

	SERVER_NODENAME

	Name of the server

	local.ehrbase.org

	SECURITY_AUTHTYPE

	HTTP security method

	BASIC / OAUTH

	SECURITY_AUTHUSER

	BASIC Auth username

	myuser

	SECURITY_AUTHPASSWORD

	BASIC Auth password

	myPassword432

	SECURITY_AUTHADMINUSER

	BASIC auth admin user

	myadmin

	SECURITY_AUTHADMINPASSWORD

	BASIC auth admin password

	mySuperAwesomePassword123

	ADMINAPI_ACTIVE

	Should admin endpoints be enabled

	true / false

	ADMINAPI_ALLOWDELETEALL

	Allow admin to delete all resources - i.e. all EHRs

	true / false

	MANAGEMENT_ENDPOINT_ENV_ENABLED

	Enable /management/env endpoint from actuator

	true / false

	MANAGEMENT_ENDPOINT_HEALTH_ENABLED

	Enable /management/health endpoint from actuator

	true / false

	MANAGEMENT_ENDPOINT_INFO_ENABLED

	Enable /management/info endpoint from actuator

	true / false

	MANAGEMENT_ENDPOINT_METRICS_ENABLED

	Enable /management/metrics endpoint from actuator

	true / false

	MANAGEMENT_ENDPOINT_PROMETHEUS_ENABLED

	Enable /management/prometheus endpoint from actuator

	true / false

	SERVER_DISABLESTRICTVALIDATION

	Disable strict validation of openEHR input

	true / false

Note

Do NOT set SPRING_SECURITY_OAUTH2_RESOURCESERVER_JWT_ISSUERURI in combination with SECURITY_AUTHTYPE=BASIC!
This will crash EHRbase at start up.

	Parameter

	Usage

	SPRING_SECURITY_OAUTH2_RESOURCESERVER_JWT_ISSUERURI

	OAuth2 server isuer uri

	example:

	https://keycloak.example.com/auth/realms/ehrbase

3.4.1.2.2. Run EHRbase + DB with Docker-Compose

Note

Prerequisite: docker-compose is installed on your machine

With Docker-Compose [https://github.com/docker/compose] you can start EHRbase and the required DB from a configuration file written in YAML format.

There is an example docker-compose.yml [https://github.com/ehrbase/ehrbase/blob/develop/docker-compose.yml] configuration file in our Git repository. Using it allows you to set up and start EHRbase along with the required database with a few simple steps:

download the docker-compose.yml file to your local
wget https://github.com/ehrbase/ehrbase/raw/develop/docker-compose.yml
wget https://github.com/ehrbase/ehrbase/raw/develop/.env.ehrbase
docker-compose up

OR: start both containers detached, without blocking the terminal
docker-compose up -d

Note

It is not necessary to have the whole Git repository on your machine, just copy the docker-compose.yml file to a local working directory and run docker-compose up.

Note

DB data is saved in ./.pgdata for easier access.

You can configure all environment variables via the file .env.ehrbase which is located at the same
folder as the docker-compose.yml file. This is also required for setting boolean values due to
Docker compose files do not allow setting boolean values directly inside docker-compose.yml.

3.4.1.2.3. Docker environment examples

Here you can find some example settings for common use cases for the usage of EHRbase Docker
containers. You can also use the environent variables with the normal .jar execution by setting
the variables according to your operating system.

3.4.1.2.3.1. Use BASIC auth

Run the docker image with this setting:

docker run --network ehrbase-net --name ehrbase -e SECURITY_AUTHTYPE=BASIC \
-e SECURITY_AUTHUSER=myuser -e SECURITY_AUTHPASSWORD=ThePasswordForUser \
-e SECURITY_AUTHADMINUSER=myadmin -e SECURITY_AUTHADMINPASSWORD=SecretAdminPassword \
-d -p 8080:8080 ehrbase/ehrbase:latest

This will set the used authentication method to BASIC auth and all requests against the EHRbase
must be provided with the Authorization header set to Basic %username%:%password% whereas the
username and password must be encoded with base64.

Note

Ensure you use an encrypted connection over https otherwise the username and password can be
descripted easily

3.4.1.2.3.2. Use OAuth2

Run the docker image with this setting.

docker run --network ehrbase-net --name ehrbase -e SECURITY_AUTHTYPE=OAUTH \
-e SPRING_SECURITY_OAUTH2_RESOURCESERVER_JWT_ISSUERURI=https://keycloak.example.com/auth/realms/ehrbase \
-d -p 8080:8080 ehrbase/ehrbase:latest

You have to prepare the authentication server including a valid client at the target server to
get this setup run.

3.4.1.2.3.3. Use OAuth2 and Attribute-based Access Control

Run the docker image with this setting.

docker run --network ehrbase-net --name ehrbase
-e SECURITY_AUTHTYPE=OAUTH \
-e SPRING_SECURITY_OAUTH2_RESOURCESERVER_JWT_ISSUERURI=https://keycloak.example.com/auth/realms/ehrbase \
-e ABAC_ENABLED=true
-e ABAC_SERVER=http://localhost:3001/rest/v1/policy/execute/name/
-d -p 8080:8080 ehrbase/ehrbase:latest

Additionally, add the configuration of the endpoints and policies either here with additional -e parameters
or more user-friendly in a separate docker-compose.yml file.

 3.4.1.3. Publish EHRbase Image

3.4.1.3. Publish EHRbase Image

This project uses Docker Hub / Cloud [https://hub.docker.com/] infrastructure to automatically build and publish Docker images on the public Docker Hub Registry whenever there is an update to the code - check recent EHRbase Docker image tags [https://hub.docker.com/r/ehrbase/ehrbase/tags].

	3.4.1.3.1. Docker Hub Autobuilds

	3.4.1.3.2. Docker Hub Configuration

 3.4.1.3.1. Docker Hub Autobuilds

3.4.1.3.1. Docker Hub Autobuilds

EHRbase Docker image is created and published on Docker Hub Registry [https://hub.docker.com/r/ehrbase/ehrbase] on every push/merge to master, develop and release-* branch.
Created Docker images are tagged as shown in table below:

	Branch

	Docker Tag

	Example

	master

	latest

	ehrbase/ehrbase:latest

	develop

	next

	ehrbase/ehrbase:next

	release-*

	semversion

	ehrbase/ehrbase:0.13.0

 3.4.1.3.2. Docker Hub Configuration

3.4.1.3.2. Docker Hub Configuration

Note

This part serves only as a reference and does not have to be repeated - it describes what was needed to do to configure automated Docker image builds on Docker Hub.

	Create a Dockerfile in root of Github repository

	Login to Docker Hub (docker.com) with the tech-user

	Login to Github with the tech-user (he has owner access to the Organisation)

	Connect tech-user to Docker Hub granting access to EHRbase Organisation to enable Autobuilds

[image: Connect Docker Hub with your Github Org]
[image: Use the real owner of the Github Org or repository to establish connection]

	Go to Builds / Configure Automated Builds

[image: Go to Builds and then to Configure Automated Builds]

	Set Up Build Rules

[image: Set up the build rules]

 3.4.2. EHRbase DB Docker Image

3.4.2. EHRbase DB Docker Image

This part of the documentation explains how to create and use PostgreSQL DB Docker image required by the EHRbase Server Application.

	3.4.2.1. Build DB Image
	3.4.2.1.1. Build Image From Dockerfile

	3.4.2.2. Use DB Image
	3.4.2.2.1. Run DB with default parameters

	3.4.2.2.2. Customization

 3.4.2.1. Build DB Image

3.4.2.1. Build DB Image

This part of the documentation explains how to locally build a Docker Image of PostgreSQL DB required by EHRbase Server Application.

3.4.2.1.1. Build Image From Dockerfile

git clone https://github.com/ehrbase/docker.git
cd docker/dockerfiles
docker build -t ehrbase_db -f ehrbase-postgresql-full.dockerfile .
docker image ls

 3.4.2.2. Use DB Image

3.4.2.2. Use DB Image

This part of the documentation explains how to run EHRbase DB in a Docker Container and how to change environment varialbes inside the Container if needed.

3.4.2.2.1. Run DB with default parameters

docker pull ehrbase/ehrbase-postgres:11.10
docker run --name ehrdb -d -p 5432:5432 ehrbase/ehrbase-postgres:11.10

3.4.2.2.2. Customization

If you want to set specific parameters use environment variables provided with the -e option to the docker run command. This will be used to set the specific parameters for root postgres user password and ehrbase user and password. If not provided the default values will be used.

The following parameters can be set via -e option:

	Parameter

	Usage

	Default

	POSTGRES_PASSWORD

	Password for postgres

	postgres

	EHRBASE_USER

	ehrbase db username

	ehrbase

	EHRBASE_PASSWORD

	ehrbase db password

	ehrbase

 3.5. Technical Documentation

3.5. Technical Documentation

This part of the documentation lists and explains
technical details of the implementation of EHRbase.

3.5.1. Overview

Warning

WIP

	openEHR

	REST

	AQL

	etc.

3.5.2. Service Layer

Warning

WIP

3.5.2.1. General

The service layer of EHRbase is composed of …

3.5.2.2. openEHR Platform Abstract Service Model

Based on the openEHR Platform Abstract Service Model [https://specifications.openehr.org/releases/SM/latest/openehr_platform.html]
the following check list is build to give an overview and document the current
state.
Each service component has a table documenting the current state of

	implementation of the method itself, if applicable

	implementation and utilization of the pre checks of the method, if applicable

	implementation and utilization of the post checks of the method, if applicable

Services

	EHR

	EHR_STATUS

	DIRECTORY

	COMPOSITION

	CONTRIBUTION

3.5.2.2.1. EHR

For more details see
I_EHR_SERVICE [https://specifications.openehr.org/releases/SM/latest/openehr_platform.html#_i_ehr_service_interface]
in the official documentation.

	Method

	Implemented

	Pre

	Post

	has_ehr

	Yes

	/

	/

	has_ehr_for_subject

	I

	/

	/

	create_ehr

	C

	/

	No

	create_ehr_with_id

	C

	No

	No

	create_ehr_for_subject

	No

	/

	/

	create_ehr_for_subject_with_id

	No

	No

	/

	get_ehr

	No

	No

	/

	get_ehrs_for_subject

	No

	/

	/

	i_ehr

	No

	/

	/

Methods with I note are currently indirectly implemented. Their
functionality is available, but the general signature might
be different.

Methods with C note are currently combined in a more general createEhr
method.

3.5.2.2.2. EHR_STATUS

For more details see
I_EHR_STATUS [https://specifications.openehr.org/releases/SM/latest/openehr_platform.html#_i_ehr_status_interface]
the in official documentation.

	Method

	Implemented

	Pre

	Post

	has_ehr_status_version

	I

	Yes

	/

	get_ehr_status

	Yes

	Yes

	/

	get_ehr_status_at_time

	I

	Yes

	/

	set_ehr_queryable

	C

	No

	No

	set_ehr_modifiable

	C

	No

	No

	clear_ehr_queryable

	C

	No

	No

	clear_ehr_modifiable

	C

	No

	No

	update_other_details

	C

	/

	/

	get_ehr_status_at_version

	Yes

	Yes

	/

	get_versioned_ehr_status

	No

	No

	No

Methods with I note are currently indirectly implemented. Their
functionality is available, but the general signature might
be different.

Methods with C note are currently combined in a more general updateStatus
method.

3.5.2.2.3. DIRECTORY

For more details see
I_EHR_DIRECTORY [https://specifications.openehr.org/releases/SM/latest/openehr_platform.html#_i_ehr_directory_interface]
the in official documentation.

	Method

	Implemented

	Pre

	Post

	has_directory

	
	
	

	has_path

	
	
	

	create_directory

	
	
	

	get_directory

	
	
	

	get_directory_at_time

	
	
	

	update_directory

	
	
	

	delete_directory

	
	
	

	has_directory_version

	
	
	

	get_directory_at_version

	
	
	

	get_versioned_directory

	
	
	

3.5.2.2.4. COMPOSITION

For more details see
I_EHR_COMPOSITION [https://specifications.openehr.org/releases/SM/latest/openehr_platform.html#_i_ehr_composition_interface]
the in official documentation.

	Method

	Implemented

	Pre

	Post

	has_composition

	
	
	

	get_composition_latest

	
	
	

	get_composition_at_time

	
	
	

	get_composition_at_version

	
	
	

	get_versioned_composition

	
	
	

	create_composition

	
	
	

	update_composition

	
	
	

	delete_composition

	
	
	

3.5.2.2.5. CONTRIBUTION

For more details see
I_EHR_CONTRIBUTION [https://specifications.openehr.org/releases/SM/latest/openehr_platform.html#_i_ehr_contribution_interface]
the in official documentation.

	Method

	Implemented

	Pre

	Post

	has_contribution

	
	
	

	get_contribution

	
	
	

	commit_contribution

	
	
	

	list_contributions

	
	
	

	contribution_count

	
	
	

3.5.3. New Contain Clause Resolution Strategy

	Chevalley 3.7.20

3.5.4. Backgroud

AQL specifies the important clause ‘CONTAINS’. This allows to specify a containment criteria on specified archetypes anywhere into composition projections. The specification is found in openEHR AQL containment [https://specifications.openehr.org/releases/QUERY/latest/AQL.html#_containment]. As mentioned in the specification, ‘CONTAINS’ specifies an hierarchical relationship with the Tree based data architecture (hence not to be confused with a WHERE clause criteria). Hierarchical constraint is modelized using connected and acyclic graph [https://en.wikipedia.org/wiki/Directed_acyclic_graph]; a node can be accessed from the root through a unique path.

3.5.4.1. Previous Approach

The previous strategy was based on maintaining a specific containment table based on a hierarchical data representation using PostgreSQL ltree [https://www.postgresql.org/docs/11/ltree.html]. The algorithm was based on identified AQL paths during the composition serialization: each path expression was then stored in a simplify way as to describe the hierarchy of archetypes within the composition, this for each composition. The table was then used to build the SQL expression corresponding to an AQL statement:

	identify the template(s) matching the contain clause

	retrieve the path for a given contain constraint for each identified template(s)

The resulting SQL expression is a combination (UNION) of SQL statement for each template.

An example of containment records is as follows:

CONTAINS COMPOSITION c CONTAINS OBSERVATION o [openEHR-EHR-OBSERVATION.pulse-oximetry.v1]

Is translated as

SELECT composition_id FROM ehr.contain WHERE label ~= '*.openEHR_EHR_OBSERVATION_pulse_oximetry_v1'

The template Id is then retrieve from the correlation between the composition entry (ehr.entry) and the template_id attribute. The same logic is used to retrieve the path of a particular node relatively to a template.

Although this approach was initially satisfactory, it has been seen as impacting performance whenever the number of records increases. As shown in the above example, the number of entries for a single composition can be significant and, in the lack of proper indexing, the identification of a template may require costly sequential search. Further, the construction of an SQL expression corresponding to an AQL CONTAINS clause was problematic. Another issue was that item_structure in /context/other_context was not referenced in containment and then was not resolved for querying.

3.5.4.2. New Approach

3.5.4.2.1. Assumptions

This approach assumes that all stored compositions are bound to one known template (at the time of this writing, operational template v1.4). A template is known whenever it is defined in the platform, it is stored in the DB in table ehr.template_store

3.5.4.2.2. Objectives

The new logic consists in resolving an AQL CONTAINS clause by:

	identifying the template(s) matching the constraints

	resolving the paths for the nodes defined in the CONTAINS clause

Identified templates are used to build the resulting SQL expression, each identified template produces a SQL query. At the end of the process, SQL queries are chained by a UNION clause.

Resolved paths are used to construct the json path expression used to query JSONB structure in the DB.

3.5.4.2.3. Technical Approach

3.5.4.2.3.1. Operational Template Traversal

All resolution are now based on so-called WebTemplates [https://www.ehrscape.com/reference.html#_template] (class OptVisitor) providing a tree construct detailing all constraints and attributes of an operational template. The tree structure is traversed using JsonPath expressions (see f.e. Baeldung’s guide [https://www.baeldung.com/guide-to-jayway-jsonpath] on this).

For instance, to check the existence of a node containment and return the corresponding AQL path, the following logic is illustrated as follows.

Assume we want to retrieve the template(s) where the following expression is satisfied:

contains COMPOSITION c[openEHR-EHR-COMPOSITION.report-result.v1] contains CLUSTER f [openEHR-EHR-CLUSTER.case_identification.v0]

The corresponding jsonpath expression to traverse the WebTemplate is:

$..[?(@.node_id == 'openEHR-EHR-COMPOSITION.report-result.v1')]..[?(@.node_id == 'openEHR-EHR-CLUSTER.case_identification.v0')]

When applied to template Virologischer Befund, the following structure is returned (these are the attributes for the retrieved node)

{
 "min" : "1",
 "aql_path" : "/context/other_context[at0001]/items[openEHR-EHR-CLUSTER.case_identification.v0]",
 "max" : "1",
 "children" : " size = 2",
 "name" : "Fallidentifikation",
 "description" : "Zur Erfassung von Details zur Identifikation eines Falls im Gesundheitswesen.",
 "id" : "fallidentifikation",
 "type" : "CLUSTER",
 "category" : "DATA_STRUCTURE",
 "node_id" : "openEHR-EHR-CLUSTER.case_identification.v0",
}

The corresponding AQL path for node openEHR-EHR-CLUSTER.case_identification.v0 in template Virologischer Befund is /context/other_context[at0001]/items[openEHR-EHR-CLUSTER.case_identification.v0]

The corresponding WebTemplate section for this particular node is represented as follows:

{
 "min": 1,
 "aql_path": "/context/other_context[at0001]/items[openEHR-EHR-CLUSTER.case_identification.v0]",
 "max": 1,
 "children": [
 {
 "min": 1,
 "aql_path": "/context/other_context[at0001]/items[openEHR-EHR-CLUSTER.case_identification.v0]/items[at0001]",
 "max": 1,
 "name": "Fall-Kennung",
 "description": "Der Bezeichner/die Kennung dieses Falls.",
 "id": "fall_kennung",
 "category": "ELEMENT",
 "type": "DV_TEXT",
 "constraints": [
 {
 "aql_path": "/context/other_context[at0001]/items[openEHR-EHR-CLUSTER.case_identification.v0]/items[at0001]/value",
 "mandatory_attributes": [
 {
 "name": "Value",
 "attribute": "value",
 "id": "value",
 "type": "STRING"
 }
],
 "attribute_name": "value",
 "constraint": {
 "occurrence": {
 "min": 1,
 "max_op": "\u003c\u003d",
 "min_op": "\u003e\u003d",
 "max": 1
 }
 },
 "type": "DV_TEXT"
 }
],
 "node_id": "at0001"
 },
 {
 "aql_path": "/context/other_context[at0001]/items[openEHR-EHR-CLUSTER.case_identification.v0]/items",
 "name": "Items",
 "attribute": "items",
 "id": "items",
 "occurrence": {
 "min": 1,
 "max_op": "\u003c\u003d",
 "min_op": "\u003e\u003d",
 "max": 1
 },
 "category": "ATTRIBUTE",
 "type": "ITEM"
 }In other terms, t
],
 "name": "Fallidentifikation",
 "description": "Zur Erfassung von Details zur Identifikation eines Falls im Gesundheitswesen.",
 "id": "fallidentifikation",
 "type": "CLUSTER",
 "category": "DATA_STRUCTURE",
 "node_id": "openEHR-EHR-CLUSTER.case_identification.v0"
},

Whenever the node_id is not specified, the jsonpath expression uses class names. For example the following AQL

SELECT location FROM EHR e CONTAINS COMPOSITION CONTAINS ADMIN_ENTRY CONTAINS location [openEHR-EHR-CLUSTER.location.v1]

Is translated as:

$..[?(@.type == 'COMPOSITION')]..[?(@.type == 'ADMIN_ENTRY')]..[?(@.node_id == 'openEHR-EHR-CLUSTER.location.v1')]

3.5.4.2.3.2. AQL Clause Interpretation

Contains clause interpretation consists in parsing the AQL expression (ANTLR) and create a corresponding list of propositions to evaluate.

The logic is based on the recursive traversal of the tree expression (AST [https://en.wikipedia.org/wiki/Abstract_syntax_tree]), from bottom left to the top of the tree, and create the template traversal query as well as the boolean validations if any if the expression contains logical operators (AND, OR, XOR …).

The evaluation does check first simple containment chains (CONTAINS…CONTAINS…CONTAINS…) using WebTemplate traversals described above, and then checks the logical propositions based on these.

3.5.4.2.3.2.1. Example

AQL expression:

select
m
from EHR e
contains (
 CLUSTER f[openEHR-EHR-CLUSTER.case_identification.v0] and
 CLUSTER z[openEHR-EHR-CLUSTER.specimen.v1] and
 CLUSTER j[openEHR-EHR-CLUSTER.laboratory_test_panel.v0]
 contains CLUSTER g[openEHR-EHR-CLUSTER.laboratory_test_analyte.v1])

The containments are evaluated with the following tree

[image:]
The containments are evaluated as follows:

	“CLUSTERf[openEHR-EHR-CLUSTER.case_identification.v0]” -

	“CLUSTERz[openEHR-EHR-CLUSTER.specimen.v1]”

	“CLUSTERg[openEHR-EHR-CLUSTER.laboratory_test_analyte.v1]” as in CLUSTER j[openEHR-EHR-CLUSTER.laboratory_test_panel.v0] contains CLUSTER g[openEHR-EHR-CLUSTER.laboratory_test_analyte.v1])

	“CLUSTERz[openEHR-EHR-CLUSTER.specimen.v1] and CLUSTERj[openEHR-EHR-CLUSTER.laboratory_test_panel.v0]containsCLUSTERg[openEHR-EHR-CLUSTER.laboratory_test_analyte.v1]”: check the INTERSECTION of the results from 2 AND 3 above

	“CLUSTERf[openEHR-EHR-CLUSTER.case_identification.v0] and CLUSTERz[openEHR-EHR-CLUSTER.specimen.v1]andCLUSTERj[openEHR-EHR-CLUSTER.laboratory_test_panel.v0]containsCLUSTERg[openEHR-EHR-CLUSTER.laboratory_test_analyte.v1]”: check the INTERSECTION of the results from 1 & 4

	“(CLUSTERf[openEHR-EHR-CLUSTER.case_identification.v0]andCLUSTERz[openEHR-EHR-CLUSTER.specimen.v1]andCLUSTERj[openEHR-EHR-CLUSTER.laboratory_test_panel.v0]containsCLUSTERg[openEHR-EHR-CLUSTER.laboratory_test_analyte.v1])”: same as 5 since it is enclosed in parenthesis.

If another operator is used: OR or XOR, then we apply UNION or DISJUNCTION respectively.

3.5.4.2.3.3. DB Changes

The two most significant changes are

	Deprecation of table ehr.containment. This table is now removed, as well as all logic associated to its population.

	New encoding of composition entry (item_structure)

The composition entry encoding (jsonb) has now the composition name encoded outside the json structure as a dv_coded_text (UDT) in table ehr.entry and removed from the archetype node id in the composition path.

This change is required since now the identified path is a generic AQL path without composition dependent values.

{
 "/name": [
 {
 "value": "Bericht"
 }
],
 "/$CLASS$": "Composition",
 "/composition[openEHR-EHR-COMPOSITION.report.v1 and name/value='Bericht']": {
 "/content[openEHR-EHR-OBSERVATION.blood_pressure.v2]": [
 {
 "/name": [
 {
 "value": "Blutdruck"
 }
],
 "/$CLASS$": "Observation"
}

The name/value attribute in the node id is now passed as an external attribute ‘name’ and the composition item_structure is encoded as

{
 "/name": [
 {
 "value": "Bericht"
 }
],
 "/$CLASS$": "Composition",
 "/composition[openEHR-EHR-COMPOSITION.report.v1]": {
 "/content[openEHR-EHR-OBSERVATION.blood_pressure.v2]": [
 {
 "/name": [
 {
 "value": "Blutdruck"
 }
],
 "/$CLASS$": "Observation
}

While name is

(Bericht,,,,)

3.5.4.2.3.4. Processing

The sequence of containment resolution is the following

[image:]

	Consists in parsing the AQL CONTAINS expression and build the propositions as described above.

	The propositions are evaluated as

	Simple containment chains using cached WebTemplates

	Computed boolean expressions based on the simple containment chains

3.5.4.2.3.5. Further Enhancements

	At this stage, ehr_status/other_details is not part of the contains resolution. The main issue here is that it is generally not associated to a valid template.

	There need to do more research for archetype_slots in a ANY type.

 3.6. Security

3.6. Security

Warning

WIP

For the moment, please see the EHRbase GitHub repository [https://github.com/ehrbase/ehrbase/tree/develop/doc/security]
for security information, issue tracker and the source code.

 3.7. Admin API

3.7. Admin API

Warning

WIP

Warning

Please be aware of potential security and consistency risks in production if API security configuration is not done properly.

Important

The Admin REST API is not part of the official openEHR standard. This is an additional feature provided by the EHRbase team to support development and system administrators.

This section covers the Admin API for EHRbase which can be used for administrative tasks or help in development.

To generally enable the Admin API set the ADMINAPI_ACTIVE environment variable to true
(see Spring Boot Externalized Configuration [https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-external-config] for more details and options on how to set such configuration attributes).

The Admin API interface is available at the “/admin” resource which will be appended to the base URL of the openEHR REST interface. E.g. if the base URL is “https://api.ehrbase.org/ehrbase” the admin API and all sub resources are available at “https://api.ehrbase.org/ehrbase/rest/admin”.

	3.7.1. Security
	3.7.1.1. General

	3.7.1.2. Role based access control

	3.7.1.3. Security related response codes

	3.7.2. /admin/ehr
	3.7.2.1. DELETE /admin/ehr/{:ehr_id}

	3.7.3. /admin/{:ehr_id}/composition
	3.7.3.1. DELETE /admin/{:ehr_id}/composition/{:composition_id}

	3.7.4. /admin/{:ehr_id}/contribution
	3.7.4.1. DELETE /admin/{:ehr_id}/contribution/{:contribution_id}

	3.7.5. /admin/{:ehr_id}/directory
	3.7.5.1. DELETE /admin/{:ehr_id}/directory/{:folder_id}

	3.7.6. /admin/template
	3.7.6.1. PUT /admin/template/:template_id

	3.7.6.2. DELETE /admin/template/:template_id

	3.7.6.3. DELETE /admin/template/all

 3.7.1. Security

3.7.1. Security

This security documentation describes how to configure the target system for using and securing the admin API resources.

3.7.1.1. General

The Admin API resources allow several operations on data that circumvent the versioning of changes in the openEHR system.
For instance, after using a DELETE operation via the standard client API the entries will still be available inside the history tables and all changes to that resources can be seen in the audit of the data entry.
The admin API allows the physical deletion of the entry and all of the history entries as well, thus the changes cannot be traced and the data is completely lost.

In health IT systems all operations on data must be stored in a manipulation safe way and all changes must be traceable.
Our recommendation is therefore to not use the admin API in production.

During development of EHRbase and connected systems it is often necessary to replace or remove data from the system completely.
This could also be done via common database tools, but this solution is often very cumbersome and not cleaning up all data related to the resource.

3.7.1.2. Role based access control

As a minimum security measurement the EHRbase Security configuration should use a role based access control. Independent from the selected security mechanism (Basic auth, OpenID-Connect, etc.) each resource request should be checked for the users role and then be permitted or rejected.

We are currently using this two roles in the system:

	Role

	Permissions

	user

	Can access all client resources specified by openEHR REST API specification and do not have access to all resources in the /admin and subsequent endpoints

	admin

	Can access all resources; i.e. all client resources and the /admin endpoints

3.7.1.3. Security related response codes

Execution of requests to each endpoint can have two security related error codes that have to be handled by client applications:

	Code

	Reason

	Possible Solution

	401

	Authorization information is incorrect / expired

	Reauthenticate the user via a new login or by refreshing the authorization information (id_token etc.)

	403

	Authorization information is valid but permission to requested resource is denied

	The users role is not allowed to access this resource. Thus this is okay or the users role must be configured in the related security system (OpenID-Connect server or config files etc.)

Depending on the security configuration the 401 error could be handled automatically, e.g. if using OAuth2 the client could get a new id_token if the used one has expired and then will re-do the request with new information. Also it could be possible to show the user a login screen to reauthenticate against the security system.

All resources in the admin API can return this response code and will not be mentioned in the documentation pages itself.

 3.7.2. /admin/ehr

3.7.2. /admin/ehr

Methods to administrate the EHR resource.

3.7.2.1. DELETE /admin/ehr/{:ehr_id}

Remove an EHR and related data physically from the database.

3.7.2.1.1. Request format

The request should be formatted as follows:

Headers

There are no headers required.

Body

No body required

3.7.2.1.2. Response format

The response will be formatted as follows:

Headers

There are no extra headers returned

Status Codes

Depending on several request conditions or errors during the request handling there will be on of the following status codes returned:

	204 (NO CONTENT) EHR has been deleted successfully.

	404 (NOT FOUND) The EHR with provided id cannot be found. This can also occur if the id is not in valid HIER_OBJECT_ID format.

Body

No body returned

 3.7.3. /admin/{:ehr_id}/composition

3.7.3. /admin/{:ehr_id}/composition

Methods to administrate the Composition resource.

3.7.3.1. DELETE /admin/{:ehr_id}/composition/{:composition_id}

Delete the composition identified by “composition_id” physically from database. This will also remove all history information on the related composition and their entries.

The target “composition_id” must be formatted as versioned object uid (i.e. UUID). In contrast to the client API this method will physically remove the given composition and all linked metadata.

3.7.3.1.1. Request format

The request should be formatted as follows:

Headers

There are no headers required.

Body

No body required

3.7.3.1.2. Response format

The response will be formatted as follows:

Headers

There are no extra headers returned

Status Codes

Depending on several request conditions or errors during the request handling there will be on of the following status codes returned:

	204 (NO CONTENT) Composition has been deleted successfully.

	404 (NOT FOUND) The Composition with provided id cannot be found. This can also occur if the id is not in valid UID format.

Body

No body returned

 3.7.4. /admin/{:ehr_id}/contribution

3.7.4. /admin/{:ehr_id}/contribution

Methods to administrate the Contribution resource.

3.7.4.1. DELETE /admin/{:ehr_id}/contribution/{:contribution_id}

Remove an Contribution and related data physically from the database.

3.7.4.1.1. Request format

The request should be formatted as follows:

Headers

There are no headers required.

Body

No body required

3.7.4.1.2. Response format

The response will be formatted as follows:

Headers

There are no extra headers returned

Status Codes

Depending on several request conditions or errors during the request handling there will be on of the following status codes returned:

	204 (NO CONTENT) Contribution has been deleted successfully.

	404 (NOT FOUND) The Contribution with provided id cannot be found. This can also occur if the id is not in valid UID format.

Body

No body returned

 3.7.5. /admin/{:ehr_id}/directory

3.7.5. /admin/{:ehr_id}/directory

Methods to administrate the Folder resource.

3.7.5.1. DELETE /admin/{:ehr_id}/directory/{:folder_id}

Delete the Folder identified by “folder_id” physically from database. This will also remove all history information on related folders and their hierarchies.

The target “folder_id” must formatted as versioned object uid (i.e. UUID).

3.7.5.1.1. Request format

The request should be formatted as follows:

Headers

There are no headers required.

Body

No body required

3.7.5.1.2. Response format

The response will be formatted as follows:

Headers

There are no extra headers returned

Status Codes

Depending on several request conditions or errors during the request handling there will be on of the following status codes returned:

	204 (NO CONTENT) Folder has been deleted successfully.

	404 (NOT FOUND) The Folder with provided id cannot be found. This can also occur if the id is not in valid UID format.

Body

No body returned

 3.7.6. /admin/template

3.7.6. /admin/template

Methods to administrate the Template resource.

3.7.6.1. PUT /admin/template/:template_id

Replace an existing template with the new provided data.

3.7.6.1.1. Request format

The request should be formatted as follows:

Headers

	Header-Name

	Required

	Description

	Accepted values

	Accept

	
	Desired response format after a successful update operation.

	application/json; application/xml

	Content-Type

	Yes

	Format of the content body

	application/json; application/xml

	Prefer

	
	Tell the API if you want the updated template data to be returned or not.

	return=representation | return=minimal

Body

The request body can contain the same data as for the client POST request in the desired format.

3.7.6.1.2. Response format

The response will be formatted as follows:

Headers

	Header-Name

	Description

	Content-Type

	Returned data type. Depends on data type sent with “Accept” header.

Status Codes

Depending on several request conditions or errors during the request handling there will be one of the following status codes returned:

	Code

	Cause/Meaning

	200 (OK)

	Template has been replaced successfully and the body contains the new Template data after the update.

	204 (NO CONTENT)

	Template has been replaced successfully and the body contains no data since “Prefer” header was set with “return=minimal”

	400 (BAD REQUEST)

	The body contains invalid data to replace the existing content; e.g. missing mandatory fields or data structures that could not be serialized.

	404 (NOT FOUND)

	The Template with provided id cannot be found.

Body

Whether the clients requested “Prefer” header setting the full new Template entry after the updated has been applied will be returned or it will be empty.

3.7.6.2. DELETE /admin/template/:template_id

Delete the template identified by “template_id” physically from server. Depending on your implementation the entry has to be removed from file or database storage.

3.7.6.2.1. Request format

The request should be formatted as follows:

Headers

There are no headers required.

Body

No body required

3.7.6.2.2. Response format

The response will be formatted as follows:

Headers

There are no extra headers returned

Status Codes

Depending on several request conditions or errors during the request handling there will be on of the following status codes returned:

	Code

	Cause/Meaning

	204 (NO CONTENT)

	Template has been deleted successfully.

	404 (NOT FOUND)

	The Template with provided id cannot be found.

	422 (UNPROCESSABLE ENTITY)

	The Request was correct and template can be found but it is still used by compositions.

Body

No body returned

3.7.6.3. DELETE /admin/template/all

Delete all templates physically from server. Depending on your implementation the entries has to be removed from file or database storage.

Note

The EHRbase environment variable “ADMINAPI_ALLOWDELETEALL” must be set to true. Otherwise the endpoint does not accept requests.

3.7.6.3.1. Request format

The request should be formatted as follows:

Headers

There are no headers required.

Body

No body required

3.7.6.3.2. Response format

The response will be formatted as follows:

Headers

There are no extra headers returned

Status Codes

Depending on several request conditions or errors during the request handling there will be one of the following status codes returned:

	Code

	Cause/Meaning

	200 (OK)

	Templates have been deleted successfully.

	422 (UNPROCESSABLE ENTITY)

	The Request was correct but there are templates which are still used by compositions.

Body

For 200 (OK): The number of deleted templates is returned in the following schema:

{
"deleted": integer
}

For 422 (UNPROCESSABLE ENTITY): Body contains message with list of Compositions that are referencing at least one Template.

 3.8. Status and Metrics

3.8. Status and Metrics

Note

Added in EHRbase version 0.15.0

Warning

The status and metrics endpoints can contain critical and sensitive information on the
running ehrbase instance that could serve possible attackers to identify vulnerabilities. Please
ensure to use a solid security config on the EHRbase server or disable the metrics and status
endpoints in production environments with sensitive data.

This section covers the status and metric endpoints provided by Spring-Boot-Actuator to provide
additional information on the running EHRbase server including metrics on the usage of the API
since last boot.

The Status and Metric endpoints provide additional information which is useful in environments that
use a bunch of microservices that rely on each other as in cloud orchestration like Kubernets.
The status endpoint can support the management of these complex systems by providing liveness and
readiness endpoints which allow orchestration tools to check whether the EHBase service is
running and if it capable of serving incoming requests.

Additional metrics allow to identify bottlenecks in connections between services as between EHRbase
service and a connected database server if the connection metric shows very long durations for
communications or if the connection pool limit is exhausted.
Another possible use case could be detection of attacks against the EHRbase service due to a
high occurrence of authorization client errors.
As you see there are many things you can do with these endpoints.

The Status and Metrics API interface is available at the “/management” resource which will be appended
to the base URL of the ehrbase instance. E.g. if EHRbase is running at “https://api.ehrbase.org” the
status API and all sub endpoints are available at “https://api.ehrbase.org/ehrbase/management”.

	3.8.1. Security

	3.8.2. Usage

	3.8.3. /management/env

	3.8.4. /management/health

	3.8.5. /management/info

	3.8.6. /management/metrics

	3.8.7. /management/prometheus

 3.8.1. Security

3.8.1. Security

Note

Added in EHRbase version 0.15.0

Since the Status and Metric endpoints provide such valuable information they are secured by
EHRbase integrated security solutions. If you are using at least the Basic Auth method to secure
incoming requests the endpoints are only available for users with the Admin-Role.

If you want to access specific metric and health endpoint from a statistics and management service
ensure not sending the passwords in clear text. For Basic Auth encode them into a Base64 string
as described here: EHRbase Security docs [https://github.com/ehrbase/ehrbase/tree/develop/doc/security#basic-auth].

Warning

All auth methods can be attacked easily if you do not use HTTPS encrypted communication
outside trusted networks as internal VPN or secured cloud system networks. Ensure to secure your
environment properly.

For OAuth2 methods please configure the auth server appropriate and provide the Admin-Role to the
user logging in. Also check your monitoring and management service manuals how to authorize
against the OAuth2 service and how to obtain new access tokens on token expiration (refresh).

 3.8.2. Usage

3.8.2. Usage

Note

Added in EHRbase version 0.15.0

By default all status and metric endpoints are disabled in EHRbase. To opt-in endpoints you should
start the EHRbase with an environment variable per endpoint you want to enable.

Run from command line:

$~/ehrbase: export MANAGEMENT_ENDPOINT_ENV_ENABLE=true
$~/ehrbase: java -jar application/target/application-0.15.0.jar

Run from Docker container:

$~/: docker run -e MANAGEMENT_ENDPOINT_ENV_ENABLE=true --name ehrbase --network ehrbase-net -p 8080:8080 -d ehrbase/ehrbase:latest

The following table lists all available endpoints that can be enabled with environment variables:

	Parameter

	Usage

	Example

	MANAGEMENT_ENDPOINT_ENV_ENABLED

	Enable /management/env endpoint from actuator

	true / false

	MANAGEMENT_ENDPOINT_HEALTH_ENABLED

	Enable /management/health endpoint from actuator

	true / false

	MANAGEMENT_ENDPOINT_INFO_ENABLED

	Enable /management/info endpoint from actuator

	true / false

	MANAGEMENT_ENDPOINT_METRICS_ENABLED

	Enable /management/metrics endpoint from actuator

	true / false

	MANAGEMENT_ENDPOINT_PROMETHEUS_ENABLED

	Enable /management/prometheus endpoint from actuator

	true / false

Additionally you can configure the following actuator settings if required:

	Parameter

	Usage

	Example

	
	

	MANAGEMENT_ENDPOINT_HEALTH_PROBES_ENABLE

	Enable Kubernetes probe endpoints /management/health/liveness and /management/health/readiness explicit in non Kubernetes environments

	true/false

	
	

	MANAGEMENT_ENDPOINTS_WEB_EXPOSUSE

	Expose enabled endpoint to clients. Only set if required

	env

	health

	info

	MANAGEMENT_ENDPOINTS_WEB_BASEPATH

	Change base path for all endpoints

	/management

	
	

 3.8.3. /management/env

3.8.3. /management/env

Note

Added in EHRbase version 0.15.0

The /env endpoint serves information of the environment that is used to run the EHRbase currently.
These information can include the running operating system type, architecture and version as well
as information on the Java Runtime Executable.

An example response on a Windows system running EHRbase could look like this:

[image: ../../../_images/management_env_example_response.png]

 3.8.4. /management/health

3.8.4. /management/health

Note

Added in EHRbase version 0.15.0

The health endpoint provides information on the current status of the running EHRbase service
process. Therefore it can provide information on liveness (service started) and readiness
(service is available to serve requests) whis is often used by cloud orchestration software like
Kubernetes.

If Spring-Boot-Actuator detects a Kubernetes environment the probes for liveness and readiness are
enabled automatically. If you like to test the endpoints outside a Kubernetes environment open file
application.yml inside application module and set value managment->endpoint->health->probes->
enabled to true and re-build and re-start EHRbase.

An example response for health on Kubernetes would look like this:

[image: ../../../_images/management_health_example_response.png]
This example also contains the output of the probes for liveness and readiness. If the status equals
UP the probe reports success.

See the official documentation [https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-features.html#production-ready-health] for more information.

 3.8.5. /management/info

3.8.5. /management/info

Note

Added in EHRbase version 0.15.0

The service /info exposes common information about the build artifact that contains the current
running EHRbase instance. These information contain the current EHRbase version as well as versions
of Archie and openEHR_SDK that have been used to build this EHRbase artifact. You should
include this version when creating a bug issue in any EHRbase related project.

This is an example response for the info service:

[image: ../../../_images/management_info_example_response.png]

 3.8.6. /management/metrics

3.8.6. /management/metrics

Note

Added in EHRbase version 0.15.0

The metrics service provides multiple useful data on the usage of EHRbase since startup of the
service. These could be for example the number of requests that have been served to clients
and also information on the response types and errors.

You can get an overview on all supported metrics that can be served with this endpoint via GET
to the path /management/metrics. This will return a list in JSON format with all possible values
for more detailed metrics that have to be requested in a separate request.

Example output:

[image: ../../../_images/management_metrics_example_response.png]
You can use the values from this list in a further request as the sub-path of metrics and you
will get the detailed metric for that point.

As an example you can use the path http.server.reqests to get information on all serves http
requests as shown below:

[image: ../../../_images/management_metric_http_example_response.png]
This example shows also a list of available tags. If you see a list you can filter and aggregate
the resuklts by using query paramerters on the same metric.

In our example we can also apply a filter for all unauthorized request by adding the tag like this:
/management/metrics/http.server.requests?tag=status:401 which could look like this:

[image: ../../../_images/management_metric_http_tag_example_response.png]
You can find more information on using tags on metrics in the official documentation [https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-features.html#production-ready-metrics-endpoint].

 3.8.7. /management/prometheus

3.8.7. /management/prometheus

Note

Added in EHRbase version 0.15.0

This endpoint provides metrics for the prometheus monitoring format and can be set as an target
uri for external monitoring services to get the info from the running EHRbese instance.

You can find more information on this format in the official Prometheus Github doc [https://github.com/prometheus/docs/blob/master/content/docs/instrumenting/exposition_formats.md].

 3.9. Attribute-based Access Control

3.9. Attribute-based Access Control

This section covers EHRbase’s Attribute-based Access Control (ABAC) system and how to configure it.

3.9.1. Concept

EHRbase offers a predefined set of rules, logics and configurations to enable and use ABAC checks for several operations.

ABAC checks are available for many endpoints. Endpoints are clustered and processed by resource/path. So all …/composition/… endpoints are defined the same and run through the same logic.

There are five of those resource groups:

	EHR

	EHR Status

	Composition

	Contribution

	Query

Note

Directory endpoints are only handling references. Definitions aren’t patient (or most likely practitioner) facing. So both aren’t available for ABAC checks.

Each can be configured to create an ABAC request with

	the given policy name and

	a set of parameters (rendered as simple JSON request body)

The set of parameters can composed via configuration from the predefined set of attributes:

	Organization (taken from the JWT claim)

	Patient (taken from the JWT claim, with current scope’s EHR subject as internal comparison)

	Template ID (taken from the scopes composition, where applicable)

3.9.2. Configuration

Enable with ABAC_DISABLED=false or matching application.yml attribute.

Note

The ABAC handling relies on OAuth2 tokens. Therefore, ABAC can practically only used together with OAuth enabled.

The ABAC server can be set with ABAC_SERVER. The URL is expected to end with “/” as the ABAC requests will directly add the policy name like: “…/policy/execute/name/” will be modified to “…/policy/execute/name/has_consent_template” in a specific instance.

Real example to enable ABAC with OAuth: SECURITY_AUTHTYPE=OAUTH;ABAC_DISABLED=false;ABAC_SERVER=http://localhost:3001/rest/v1/policy/execute/name/;SPRING_SECURITY_OAUTH2_RESOURCESERVER_JWT_ISSUERURI=https://keycloak.PROJECT.com/auth/realms/ctr

Both the organization and patient claim of the expected JWT can be configured via ABAC_ORGANIZATIONCLAIM and ABAC_PATIENTCLAIM respectively. Their default is organization_id and patient_id.

For the configuration of the endpoints please refer to the application.yml. Here is one groups’ section as example, where the composition endpoints are configured to have the policy has_consent_template with the listed attributes in the request body:

policy:
 composition:
 name: 'has_consent_template'
 parameters: 'organization, patient, template'

Warning

If parameters like organization and patient are configured to be used by the logic, but the context’s JWT doesn’t carry the matching claim the ABAC check will fail.

3.9.3. Detailed endpoint overview

3.9.3.1. EHR

Enabled ABAC-parameters: organization, patient

Disabled: template - not valid in scope of EHR

Implemented and tested:

	Get(s)

Not included:

	Post, Put: Completely new EHR has no subject context and EHR has no template. No ABAC checks.

3.9.3.2. EHR Status

Enabled ABAC-parameters: organization, patient

Disabled: template - not valid in scope of EHR_STATUS

Implemented and tested:

	Get(s)

	Put

	Get(s) - Versioned sub-type - EHR_STATUS version

3.9.3.3. Composition

Enabled ABAC-parameters: organization, patient, template

Implemented and tested:

	Get(s)

	Post, Put

	Delete

	Get(s) - Versioned sub-type - Composition version

3.9.3.4. Contribution

Enabled ABAC-parameters: organization, patient, template

Implemented and tested:

	Post

Not included:

	Get: Only returns references, so no ABAC checks necessary.

3.9.3.5. Query

Enabled ABAC-parameters: organization, patient, template

Note: Currently this handling relies on the AuditResultMap of the QueryService to provide the ABAC logic with patient and template context data. This entails, that patient and template ID(s - multiple per query possible) are only given, when the query directly sets them in the SELECT.

Implemented and tested:

	All four query endpoints

 4. SDK

4. SDK

This section gives information about the openEHR Software Development Kit.

Please also see the openEHR SDK Github repository [https://github.com/ehrbase/openEHR_SDK].

	4.1. Guides
	4.1.1. SDK as dependency

	4.2. Reference
	4.2.1. Client module
	4.2.1.1. Client

	4.2.1.2. EHR Endpoint

	4.2.1.3. Template Endpoint

	4.2.1.4. Composition Endpoint

	4.2.1.5. AQL Endpoint

	4.2.1.6. Directory Endpoint

	4.2.2. Generator module
	4.2.2.1. Usage

 4.1. Guides

4.1. Guides

Warning

WIP

	4.1.1. SDK as dependency

 4.1.1. SDK as dependency

4.1.1. SDK as dependency

Warning

WIP

To make use of the SDK’s features it needs to be included as dependency.

For instance, to build a simple client, include the client module as dependency.

Depending on the project structure and used dependency management tools this might look like the following pom.xml snipped in a Maven example:

<properties>
 <!-- ... -->
 <ehrbase.sdk.version>$VERSION_TAG_OR_LATEST_COMMIT_HASH</ehrbase.sdk.version>
</properties>

<repositories>
 <!-- ... -->
 <!-- external -->
 <repository>
 <id>jitpack.io</id>
 <url>https://jitpack.io</url>
 </repository>
</repositories>

<dependencyManagement>
 <dependencies>
 <!-- ... -->
 <dependency>
 <groupId>com.github.ehrbase.openEHR_SDK</groupId>
 <artifactId>client</artifactId>
 <version>${ehrbase.sdk.version}</version>
 </dependency>
 </dependencies>
</dependencyManagement>

<dependencies>
 <!-- ... -->
 <dependency>
 <groupId>com.github.ehrbase.openEHR_SDK</groupId>
 <artifactId>client</artifactId>
 </dependency>
</dependencies>

 4.2. Reference

4.2. Reference

Warning

WIP

Reference documentation of the openEHR Software Development Kit from EHRbase.

	4.2.1. Client module
	4.2.1.1. Client
	4.2.1.1.1. Interface and implementation

	4.2.1.1.2. Client setup

	4.2.1.1.3. Template provider

	4.2.1.1.4. Additional steps

	4.2.1.2. EHR Endpoint
	4.2.1.2.1. Create an EHR

	4.2.1.2.2. Get the EHR status

	4.2.1.2.3. Update the EHR status

	4.2.1.3. Template Endpoint
	4.2.1.3.1. Ensure existence of a template

	4.2.1.4. Composition Endpoint
	4.2.1.4.1. Commit composition

	4.2.1.4.2. Find composition

	4.2.1.5. AQL Endpoint
	4.2.1.5.1. Query execution

	4.2.1.6. Directory Endpoint
	4.2.1.6.1. Folder

	4.2.2. Generator module
	4.2.2.1. Usage

 4.2.1. Client module

4.2.1. Client module

Warning

WIP

Reference documentation of the client module.

Note

Please have a look at the integration tests for many working examples.
(Tests named *IT in src/test/java/org/ehrbase/client/openehrclient/defaultrestclient/)

	4.2.1.1. Client
	4.2.1.1.1. Interface and implementation

	4.2.1.1.2. Client setup

	4.2.1.1.3. Template provider

	4.2.1.1.4. Additional steps

	4.2.1.2. EHR Endpoint
	4.2.1.2.1. Create an EHR

	4.2.1.2.2. Get the EHR status

	4.2.1.2.3. Update the EHR status

	4.2.1.3. Template Endpoint
	4.2.1.3.1. Ensure existence of a template

	4.2.1.4. Composition Endpoint
	4.2.1.4.1. Commit composition

	4.2.1.4.2. Find composition

	4.2.1.5. AQL Endpoint
	4.2.1.5.1. Query execution
	4.2.1.5.1.1. Abstract query

	4.2.1.5.1.2. Native query

	4.2.1.5.1.3. Entity query

	4.2.1.6. Directory Endpoint
	4.2.1.6.1. Folder

 4.2.1.1. Client

4.2.1.1. Client

Warning

WIP

The openEHR Client is the foundation of all following functionalities.
It needs to be created and set up before the endpoints can be used.

4.2.1.1.1. Interface and implementation

All compatible clients need to implement the OpenEhrClient Interface.

Standard operation is possible with the included DefaultRestClient implementation.

4.2.1.1.2. Client setup

To set up a default client it is necessary to create a new instance,
which requires the following components as parameters:

	OpenEhrClientConfig containing the base URI of the openEHR REST API backend server

	And a TemplateProvider (see below)

Together a typical setup might look like:

DefaultRestClient client = new DefaultRestClient(
 new OpenEhrClientConfig(new URI("http://localhost:8080/ehrbase/rest/openehr/v1/")),
 templateProvider);

4.2.1.1.3. Template provider

The TemplateProvider interface needs an implementation that gives the SDK access to
the templates used.

Technically, it needs to provide a function Optional<OPERATIONALTEMPLATE> find(String s)
which returns an object representation of a given template ID.

An example is the TestDataTemplateProvider from the SDK’s own integration tests:

@Override
public Optional<OPERATIONALTEMPLATE> find(String templateId) {
 return Optional.ofNullable(OperationalTemplateTestData.findByTemplateId(templateId))
 .map(OperationalTemplateTestData::getStream)
 .map(s -> {
 try {
 return TemplateDocument.Factory.parse(s);
 } catch (XmlException | IOException e) {
 throw new RuntimeException(e.getMessage(), e);
 }
 })
 .map(TemplateDocument::getTemplate);
}

Please also see the used OperationalTemplateTestData enum to understand how
actual .opt files can be made accessible.

4.2.1.1.4. Additional steps

Now the client is set up and ready to be used.
Before going on it might make sense to sync your backend with the templates used by your client.

The template provider could have a listTemplateIds() method for that purpose.
So the following would use this method
and the template endpoint (see Template endpoint)
to make sure all templates of this clients scope are available in the backend.

templateProvider.listTemplateIds().forEach(
 t -> client.templateEndpoint().ensureExistence(t)
);

 4.2.1.2. EHR Endpoint

4.2.1.2. EHR Endpoint

Warning

WIP

The DefaultRestClient includes a DefaultRestEhrEndpoint
with the following functionalities.

4.2.1.2.1. Create an EHR

The creation of a new EHR is as simple as calling:

UUID ehr = openEhrClient.ehrEndpoint().createEhr();

Note

The option to add a custom EHR Status object at this step is already on the road map.

4.2.1.2.2. Get the EHR status

Retrieval of the EHR Status of a given EHR is done with a call like:

Optional<EhrStatus> ehrStatus = openEhrClient.ehrEndpoint().getEhrStatus(ehrId);

4.2.1.2.3. Update the EHR status

Updating works in the same way and might be used like in the following:

// Retrieval and modification of the Status
...
// Followed by updating it
openEhrClient.ehrEndpoint().updateEhrStatus(ehrId, ehrStatus);

 4.2.1.3. Template Endpoint

4.2.1.3. Template Endpoint

The DefaultRestClient includes a DefaultRestTemplateEndpoint
with the following functionalities.

Warning

WIP

4.2.1.3.1. Ensure existence of a template

Uploading necessary operational templates is vital for many other client functions.

The ensureExistence(String templateId) method combines a check
and the upload, if the template is not already available on the server.

The following example utilizes a TemplateProvider
(see Client reference)
to go through all templates of the client’s scope and ensure their existence:

templateProvider.listTemplateIds().forEach(
 t -> client.templateEndpoint().ensureExistence(t)
);

 4.2.1.4. Composition Endpoint

4.2.1.4. Composition Endpoint

Warning

WIP

The DefaultRestClient includes a DefaultRestCompositionEndpoint
with the following functionalities.

4.2.1.4.1. Commit composition

Committing a composition is done using the mergeCompositionEntity method.
Its idea is that the client already works with an instance of the composition
(of a generated template entity type, like described here).

For example, a new instance could be created and modified to contain two values entered via a user interface.
This object now might only contain those two values, and a representation of the structure of the composition (as generated type/class definition).

Note

Despite that this simplified example only mentions two values, it is still necessary to provide data to all fields,
which are required as per openEHR Reference Model.
Otherwise the backend server might reject the payload as invalid.

Afterwards, calling the mergeCompositionEntity method would commit the composition to the server.
Before returning data, this method also processes the server response to enrich the given composition object.
Specifically, server-side created data values like the composition’s Version Uid are written into the object.

Therefore, and after successful execution, the method returns a representation of the composition as it is now persisting on the backend server.

A very simplified example could look like:

// Initializing the object
EhrbaseBloodPressureSimpleDeV0Composition composition = new EhrbaseBloodPressureSimpleDeV0Composition();

// Adding values
[...].setSystolicMagnitude(120.0);
[...].setSystolicUnits("mm[Hg]");
[...].setDiastolicMagnitude(120.0);
[...].setDiastolicUnits("mm[Hg]");

// Committing and altering the object with the response data
client.compositionEndpoint(ehrId).mergeCompositionEntity(composition);

// For instance, the specific Version UID can now be accessed
composition.getVersionUid();

4.2.1.4.2. Find composition

To retrieve the latest version of a specific composition -
or to get response that allows to understand that no such composition exists -
the find method can be used.

The usage is illustrated in the following example:

UUID compositionId = $COMPOSITION_ID;
Optional<EhrbaseBloodPressureSimpleDeV0Composition> compo = compositionEndpoint
 .find(compositionId, EhrbaseBloodPressureSimpleDeV0Composition.class);

 4.2.1.5. AQL Endpoint

4.2.1.5. AQL Endpoint

Warning

WIP

The DefaultRestClient includes a DefaultRestAqlEndpoint
with the following functionalities.

4.2.1.5.1. Query execution

The execution is the only function of this endpoint.
It supports two types of query implementations, both based on a common definition.

4.2.1.5.1.1. Abstract query

The basic querying concept is inspired by libraries and tools like
jOOQ [https://www.jooq.org/] and therefore focuses on typesafe AQL,
based on generated entity code and record handling.

The following examples illustrates that with a simple native AQL query.
All types of Query and their detailed usage will be discussed below.

private List<UUID> queryAllEhrs() {
 Query<Record1<UUID>> query = Query.buildNativeQuery("SELECT e/ehr_id/value FROM EHR e", UUID.class);
 List<Record1<UUID>> result = client.aqlEndpoint().execute(query);

 List<UUID> ehrs = new ArrayList<>();
 result.forEach(r -> ehrs.add(r.value1()));
 return ehrs;
}

In this example a query is created.
Its return type is already embedding a Record, which is defined depending on the amount and type of the result values.
Here, the query has one select value.
The response will only have one column of type UUID,
so together the response is defined as Record1<UUID>.

After execution the result is wrapped in a List, because it can have none or many result values (rows).
Accessing the values is type safe, since the record was already defined with the specific type.

Records are supported up to 21 result types (Record21).
There are no restrictions on which types can be used.

4.2.1.5.1.2. Native query

A native query can be build with the input of a string representation
of a native AQL query. For instance, SELECT e/ehr_id/value FROM EHR e.

Additionally, parameters can be used and added as Java variables.
They need to be formatted like $ehr_id in the native query string.
Setting its value is done using the ParameterValue class.
See the following example:

Query<Record2<VersionUid, TemporalAccessor>> query = Query.buildNativeQuery(
 "select a/uid/value, a/context/start_time/value from EHR e[ehr_id/value = $ehr_id]
 contains COMPOSITION a [openEHR-EHR-COMPOSITION.sample_encounter.v1]",
 VersionUid.class, TemporalAccessor.class);

 List<Record2<VersionUid, TemporalAccessor>> result = openEhrClient.aqlEndpoint().execute(
 query, new ParameterValue("ehr_id", ehr));

4.2.1.5.1.3. Entity query

In contrast, entity queries make use of the entities generator by the Generator
(see here).
Therefore, is it not necessary to manually design and implement a custom native AQL query.

The generator creates Java POJO classes of the composition, but also containment classes that can be used in a query.
In the following example a simple exemplary blood pressure type is assumed to be generated already.

EhrbaseBloodPressureSimpleDeV0CompositionContainment containmentComposition = EhrbaseBloodPressureSimpleDeV0CompositionContainment.getInstance();
BloodPressureTrainingSampleObservationContainment containmentObservation = BloodPressureTrainingSampleObservationContainment.getInstance();

containmentComposition.setContains(containmentObservation);

EntityQuery<Record3<TemporalAccessor, BloodPressureTrainingSampleObservation, CuffSizeDefiningcode>> entityQuery = Query.buildEntityQuery(
 containmentComposition,
 containmentComposition.START_TIME_VALUE,
 containmentObservation.BLOOD_PRESSURE_TRAINING_SAMPLE_OBSERVATION,
 containmentObservation.CUFF_SIZE_DEFININGCODE
);
// plus some conditions like WHERE, see below

This snippet shows three things:

First, the usage of the containment classes to define parts of the query (like select values).
The internal query handling in buildEntityQuery will create a correct native AQL query from the input.
This makes AQL querying much easier, because it removed the burden of being an expert on the query language.

Second, next to being able to retrieve simple types, this query also shows
automatic parsing and conversation to complex result types like an openEHR Observation.
Specifically, a BloodPressureTrainingSampleObservation type is directly available for further processing, after the query was executed.

Third, the setContains method simplifies the building of native AQL strings like
COMPOSITION c0[openEHR-EHR-COMPOSITION.report.v1] contains SECTION s1[openEHR-EHR-SECTION.adhoc.v1] (different example).

Additionally, entity queries are supporting an included set of conditions:

	and

	or

	not

	equal

	notEqual

	greaterOrEqual

	greaterThan

	lessOrEqual

	lessThan

	matches

	exists

These methods can be used to build AQL conditions, like in the following example:

Condition condition1 = Condition.greaterOrEqual(containmentObservation.DIASTOLIC_MAGNITUDE, 13d);
 Condition condition2 = Condition.notEqual(containmentObservation.MEAN_ARTERIAL_PRESSURE_UNITS, "mh");
 Condition condition3 = Condition.lessThan(containmentObservation.TIME_VALUE, OffsetDateTime.of(2019, 04, 03, 22, 00, 00, 00, ZoneOffset.UTC));

 Condition cut = condition1.and(condition2.or(condition3));

 assertThat(cut.buildAql()).isEqualTo("(v/data[at0001]/events[at0002]/data[at0003]/items[at0005]/value/magnitude >= 13.0 and " +
 "(v/data[at0001]/events[at0002]/data[at0003]/items[at1006]/value/units != 'mh' or v/data[at0001]/events[at0002]/time/value < '2019-04-03T22:00:00Z')" +
 ")");

Finally, entity queries can use those conditions and other specific logical expressions to create

	WHERE (see Observation above)

	ORDER BY (ascending, descending, andThenAscending, andThenDescending)

	TOP (forward, backward)

clauses. See the following example:

EntityQuery<Record1<EhrbaseBloodPressureSimpleDeV0Composition>> entityQuery = Query.buildEntityQuery(
 containmentComposition,
 containmentComposition.EHRBASE_BLOOD_PRESSURE_SIMPLE_DE_V0_COMPOSITION
);
Parameter<UUID> ehrIdParameter = entityQuery.buildParameter();

Condition where = Condition.equal(EhrFields.EHR_ID(), ehrIdParameter);
OrderByExpression orderBy = OrderByExpression.descending(containmentObservation.SYSTOLIC_MAGNITUDE).andThenAscending(containmentObservation.DIASTOLIC_MAGNITUDE);
entityQuery.where(where).orderBy(orderBy);

 4.2.1.6. Directory Endpoint

4.2.1.6. Directory Endpoint

Warning

WIP

The DefaultRestClient includes a DefaultRestDirectoryEndpoint.
But unlike the other endpoints the directory handling utilizes a different paradigm.
The FolderDAO is used to keep an active record,
i.e. a Java object constantly synced with the database entry.

4.2.1.6.1. Folder

To start working with a folder the directory object and its root folder can be retrieved with:

UUID ehr = openEhrClient.ehrEndpoint().createEhr();
FolderDAO root = openEhrClient.folder(ehr, "");

With the FolderDAO at hand the following operations are available:

	Getting and setting the name

	Listing all sub folders

	Getting a sub folder, which will be created, if it not exists already

	Adding compositions to the folder, which includes committing the composition to the backend

	Finding of compositions in the folder structure, i.e. the matching EHR context

Together an example might be:

UUID ehr = openEhrClient.ehrEndpoint().createEhr();

FolderDAO root = openEhrClient.folder(ehr, "");

FolderDAO visit = root.getSubFolder("case1/visit1");

EhrbaseBloodPressureSimpleDeV0Composition bloodPressureSimpleDeV01 = TestData.buildEhrbaseBloodPressureSimpleDeV0();
visit.addCompositionEntity(bloodPressureSimpleDeV01);

EhrbaseBloodPressureSimpleDeV0Composition bloodPressureSimpleDeV02 = TestData.buildEhrbaseBloodPressureSimpleDeV0();
visit.addCompositionEntity(bloodPressureSimpleDeV02);

List<EhrbaseBloodPressureSimpleDeV0Composition> actual = visit.find(EhrbaseBloodPressureSimpleDeV0Composition.class);
assertThat(actual).size().isEqualTo(2);

 4.2.2. Generator module

4.2.2. Generator module

Warning

WIP

Reference documentation of the generator module.

4.2.2.1. Usage

The generator can be used to create Java classes representing a given openEHR template.

After locally building the SDK with mvn clean install a generator .jar is available.

To generate and entity class from a template generally use:

java -jar generator-version.jar
-h show help
-opt <arg> path to opt file
-out <arg> path to output directory
-package <arg> package name

In a custom use case the generation could look like:

java -jar generator/target/generator-$VERSION.jar -opt ../$PATH_TO_TEMPLATE/ehrbase_blood_pressure_simple.de.v0.opt -out ../$OUTPUT_PROJECT/src/main/java -package org.$OUTPUT_PACKAGES.opt

 5. Load Testing

5. Load Testing

This section describes the load testing process used to test EHRBASE.

5.1. Testehr

Testehr is a Groovy script used to bomb any openEHR compliant server, following this flow:

	user provides parameters

	ehrs: number of EHRs to be created

	template: valid operational template

	compositions: number of COMPOSITIONs to be committed

	aql: valid AQL query, associated with the given template

	scaleTemplates: optional, number of templates to use

Pseudo-code:

for (i in 1..scaleTemplates)
{
 ehrsCreated = []

 testTemplate = copyAndChangeId(template)

 if (!server.templateExists(testTemplate))
 {
 server.templateUpload(testTemplate)
 }

 for (j in 1..ehrs)
 {
 ehrsCreated << server.createEhr(...)
 }

 commitTime = getTime()
 for (k in 1..compositions)
 {
 compo = generateComposition(testTemplate)
 ehr = ehrsCreated.pick()
 server.commitComposition(ehr, compo)
 }
 commitTime = getTime() - commitTime // elapsed time

 aqlTimes = []
 for (n in 1.. repeatAql)
 {
 aqlTime = getTime()
 server.runAql(aql)
 aqlTime = getTime() - aqlTime // elapsed time
 aqlTimes << aqlTime
 }

 [aqlTimeMax, aqlTimeMin, aqlTimeAvg] = calculateMaxMinAvg(aqlTimes)
}

For instance, if you provider these parameters:

	ehrs = 100

	compositions = 20

	scaleTemplates = 3

	repeatAql = 5

The script will do 3 loops over 3 different templates (it’s the same template but has different ID),
will create 100 EHRs, and commit 20 COMPOSITIONs, distributed between the 100 EHRs (the ehrsCreated.pick() is random).
In general, you might want to provide compositions >> ehrs (much greater then). Then an AQL query will be executed
‘repeatAql’ times, and the max, min and avg execution times will be calculated.

5.2. Script execution

You need Gradle (https://gradle.org/) to be installed to build, package and run. This was tested with Gradle 6.4.1.

	$ gradle clean // clean the build

	$ gradle build // compiles

	$ gradle fatJar // packages generating a .jar file with all the dependencies (standalone)

	$ gradle run –args=”-ehrs 100 -template src/main/resources/opts/LabResults1.opt -compositions 20 -aql src/main/resources/queries/LabResults1.json” // run the script

Note: gradle run will build the script.

If you built the fatJar, you can run it anywhere without gradle:

	$ java -jar build/libs/load-testehr-all.jar -ehrs 10 -template src/main/resources/opts/LabResults1.opt -compositions 20 -aql src/main/resources/queries/LabResults1.json

 6. FHIR Bridge

6. FHIR Bridge

This section gives information about the FHIR-Bridge

Please also see the openEHR SDK Github repository [https://github.com/ehrbase/openEHR_SDK].

	6.1. Overview
	6.1.1. Design decisions

	6.1.2. Architecture Overview

	6.1.3. Extensibility

	6.1.4. Testing

	6.2. Installation

	6.3. Database for Audit Logs in FHIR Bridge

	6.4. Do the mapping
	6.4.1. Create new branch

	6.4.2. Start docker

	6.4.3. Build

	6.4.4. IDE
	6.4.4.1. Add external files

	6.4.4.2. Design the mapping

	6.4.5. Structure Definition (Enum)

	6.4.6. Use the SDK generator to create new classes from the operational template

	6.4.7. Use the SDK generator to create new classes from the operational template

	6.5. Flows
	6.5.1. ‘Create’ operation internal flow

	6.5.2. ‘Search’ operation internal flow

	6.5.3. ‘Read’ operation internal flow

 6.1. Overview

6.1. Overview

The FHIR Bridge is a component designed as a broker between an HL7 FHIR client and an openEHR server.
It contains several ad-hoc integrations for creating, searching and getting data using the
FHIR formats in the front-end and the openEHR data structures in the backend. It helps to transform data in the FHIR format to openEHR compositions.
It implements FHIR endpoints based on the HAPI FHIR implementation, validates incoming data, transforms data from FHIR to openEHR
(based on manually created data mapping classes), stores the FHIR resources in an internal database (including a status information
regarding the transformation) and also provides functions to get data back out from an openEHR data repository (GET and FHIR Search). For the
COVID-19 platform, the focus lies on the integration of the GECCO data set, the German COVID-19 consensus data set.

You can clone the project from https://github.com/ehrbase/fhir-bridge

6.1.1. Design decisions

	Each integration is designed and developed ad-hoc, there is no generic solution to map FHIR into openEHR and viceversa.

	On the FHIR side the type of resource is needed, and a correspondent profile. For some resources there might not be a profile
available, which is not ideal since semantics for data mapping depend on speicifc FHIR profiles.

	On the openEHR side, the Operational Templates are needed (OPT).

	Data mappings are mainly done between a FHIR profie and an openEHR OPT.

	To support the ‘create’ FHIR operation, a mapping should be designed and implemented to receive a FHIR resource, map it’s data
to an openEHR COMPOSITION, and submit that COMPOSITION to the openEHR Server.

	To support the ‘search’ FHIR operation, an openEHR query (AQL) should be designed to get the required data from the openEHR
Server to map to FHIR resources to be retrieved. We chosen to return the COMPOSITION.uid as the FHIR resource id.

	To support the ‘read’ FHIR operation, we use the COMPOSITION.uid retrieved as the FHIR resource id in the search, as the FHIR
resource identifier to get the individial resource.

6.1.2. Architecture Overview

[image: alternate text]
The FHIR bridge is mainly implemented over Spring Boot (application + configuration), using HAPI FHIR to process all FHIR related
requests, expose API endpoints (via “resource providers”) and support all FHIR resource structures. Currently, the FHIR Bridge implements endpoints for HL7 FHIR (R4)
in accordance with the German Corona Consensus Data Set (GECCO) and the profiles and resources of the Medical Informatics Initiative.

The controller forward the data to the mapping classes which mainly use the openEHR Software Development Kit (SDK) for conducting the mapping and transformation. The SDK
has a code generator which allows to automatically generate Java classes from openEHR Templates (using the Operational Template Format (OPT)). These generated classes
can be directly incorporated to build objects representing a human-friendly format for handling openEHR data. Moreover, the SDK encapsulates the REST calls
of the official openEHR REST API and provides convenience functions that are implemented within the Mapper and the EHRbase Service components.

6.1.3. Extensibility

Above figure shows the ability of the FHIR Bridge to implement endpoints for further data formats. As the application is based on Spring Boot, it is possible to
add new services using the same application and configuration. Such a mapping, for example for CDISC ODM or HL7 CDA. To achieve this, there is only the need to
add a new Spring Rest Service with the expected parameters and a corresponding Mapper component. The other components can be re-used.

6.1.4. Testing

We preparated a set of HTTP requests to be able to tests different services of the FHIR bridge. The requests work on Insomnia REST
Client (https://insomnia.rest/).

Just install Insomnia, and import this file: https://github.com/ehrbase/fhir-bridge/blob/develop/src/test/resources/Insomnia_2020-07-27.json

Both, the openEHR server (EHRBASE) and FHIR bridge need to be running to be able to test.

 6.2. Installation

6.2. Installation

	Install Java 11 (preferably https://adoptopenjdk.net/)

	Check for correct version:

java[c] -version

	for Linux:
https://adoptopenjdk.net/installation.html#linux-pkg

sudo apt-get install adoptopenjdk-11-hotspot
sudo apt-get install adoptopenjdk-11-hotspot-jre

	Install Maven 3

	Instructions: https://maven.apache.org/install.html

	Check for correct version:

mvn --version

	for Linux:

in (.bashrc)
2020-08-05 add maven to path
 export PATH="/home/birgit/local/apache-maven-3.6.3/bin:$PATH"
 $ source ~/.bashrc

	install git / git bash

	install docker

sudo apt-get install docker

	Install IntelliJ (or similar) if necessary

sudo snap install intellij-idea-community --classic

	Linux: don’t forget to set path variables

in (.bashrc)
2020-08-05 add maven to path
export PATH="/home/USERNAME/local/apache-maven-3.6.3/bin:$PATH"
export PATH="/home/USERNAME/Desktop/num/Installer/jdk-11.0.8+10/bin:$PATH"
export JAVA_HOME="/home/USERNAME/Desktop/num/Installer/jdk-11.0.8+10"

	Windows: set path (if not automatically done):

PATH="C:\Program Files\AdoptOpenJDK\jdk-11.0.7.10-hotspot\bin"
PATH="C:\Program Files\apache-maven-3.6.3-bin\apache-maven-3.6.3\bin"
JAVA_HOME="C:\Program Files\AdoptOpenJDK\jdk-11.0.7.10-hotspot\"
JAVA_TOOL_OPTIONS="-Dfile.encoding=UTF8"

6.3. Database for Audit Logs in FHIR Bridge

	add config/application.yml to the root folder of fhir-bridge

	with the following properties:

ehrbase:
 address: localhost
 port: 8080
 path: /ehrbase/rest/openehr/v1/
spring:
 datasource:
 url: jdbc:postgresql://localhost:9999/fhir_bridge
 username: fhir_bridge
 password: fhir_bridge

	run
docker run --name fhirdb -e POSTGRES_PASSWORD=fhir_bridge -e POSTGRES_USER=fhir_bridge -d -p 9999:5432 postgres

	run fhir-bridge

 6.4. Do the mapping

6.4. Do the mapping

If not further mentioned, the paths are relative to
fhir-bridge/src/main/java/org/ehrbase/fhirbridge ## Prepare setup

6.4.1. Create new branch

Each change to the FHIR bridge should have a ticket created, explaining
the change. Create a new feature branch with ticket number like:
feature/123_awesome_new_feature, where 123 stands for the issue
number

optional: make a new checkout
git clone git@github.com:ehrbase/fhir-bridge.git
default:
cd fhir-bridge
git checkout -b [BRANCH-NAME]
At the first push:
git push -u origin [BRANCH-NAME]
For later pushes:
git push

6.4.2. Start docker

Start docker, the erhdb and the fhirdb if they don’t already
run. For example (Birgit 2020-10-16)

docker rm ehrdb
docker rm ehrbase
docker run --name ehrdb --network ehrbase-net -e POSTGRES_PASSWORD=postgres -d -p 5432:5432 ehrbase/ehrbase-postgres:latest
docker run --name ehrbase --network ehrbase-net -d -p 8080:8080 -e DB_URL=jdbc:postgresql://ehrdb:5432/ehrbase -e DB_USER=ehrbase -e DB_PASS=ehrbase -e AUTH_TYPE=none -e SYSTEM_ALLOW_TEMPLATE_OVERWRITE=true -e SERVER_NODENAME=local.ehrbase.org ehrbase/ehrbase:0.14.0
docker run -p 9999:5432 --name fhir-bridge -e POSTGRES_PASSWORD=fhir_bridge -e POSTGRES_USER=fhir_bridge -d postgres

6.4.3. Build

Build the current fhir-bridge

mvn clean install

6.4.4. IDE

Load project into development environment

	especially for eclipse: as a Maven project

6.4.4.1. Add external files

The following files must be copied into the respective target
directories.

	FHIR data structure (XML format)

	Target directory fhir-bridge/src/main/resources/profiles

	Source https://simplifier.net/ForschungsnetzCovid-19 (under
Resources/Observation)

	FHIR observation sample file (JSON format)

	Target directory fhir-bridge/src/test/resources/Observation

	Source
https://simplifier.net/ForschungsnetzCovid-19/~resources?fhirVersion=R4&sortBy=RankScore_desc

	You can set a filter to the Examples

	Caution:

	the profile must be a profile from simplifier-Covid 19, fitting
to the profile you just downloaded

	the profile must have a working UUID (like
subject: { reference: Patient/07f602e0-579e-4fe3-95af-381728bf0d49 })

	Operational template (OPT format)

	Target directory fhir-bridge/src/main/resources/opt

	Source
http://88.198.146.13/ckm/projects/1246.152.26/resourcecentre
(GECCO Core)

	Check the OPT in Pablos Tool: toolkit.cabolabs.com

	Remember to check the downloaded files for content and syntax errors.

	Here you can check your syntax

	Check for xml: https://xmllint.com/en

	Check for json: https://jsonlint.com/

6.4.4.2. Design the mapping

	Design the mapping by looking for 1..1 in the Fhir-profile and the
fields in the OPT.

	Example
https://drive.google.com/file/d/1naGVhto6efWfF2sDoO86pYTnaUiiMq3J/view?usp=sharing

6.4.5. Structure Definition (Enum)

	copy the Fhir-Url from resources/profiles/[TEMPLATE].opt to
fhir/Profile.java

<StructureDefinition xmlns="http://hl7.org/fhir">
 <url value="https://www.netzwerk-universitaetsmedizin.de/fhir/StructureDefinition/body-height" />
 <name value="BodyHeight" />

	if your FHIR-observation-sample-file contains an extension, add its
Profile URL, too.

	Add an entry in /config/util/OperationalTemplateData.java with
the name of the opt-file and the template_id-value

Koerpergroesse.opt
[...]
 <template_id>
 <value>Körpergröße</value>
 </template_id>

HEART_RATE("", "Koerpergroesse.opt", "Körpergröße"),

6.4.6. Use the SDK generator to create new classes from the operational template

	(Windows example started from the path
:code:`../openEHR_SDK/generator/target)

java
-jar generator-0.3.7.jar
-opt ../../../fhir-bridge/src/main/resources/opt/Atemfrequenz.opt
-out ../../../fhir-bridge/src/main/java
-package org.ehrbase.fhirbridge.opt

	Linux example (only resource-opt needs to be adapted)

java -jar ../openEHR_SDK/generator/target/generator-0.3.7.jar -opt src/main/resources/opt/KlinischeFrailty.opt -out src/main/java/ -package org.ehrbase.fhirbridge.opt

	Note: Ignore error message regarding missing language packages
(temporary problem; TerminologyProvider).

	Refresh project in the development environment

	New classes and structures (example breathing rate)

$ opt/breathingfrequencycomposition
├── BreathrateComposition.java
├── BreathrateCompositionContainment.java
├── definition
 ├── RespiratoryRateObservation.java
 └── RespiratoryRateObservationContainment.java

 Structure Definition (Enum)

	copy the Fhir-Url from resources/profiles/[TEMPLATE].opt to
fhir/Profile.java

<StructureDefinition xmlns="http://hl7.org/fhir">
 <url value="https://www.netzwerk-universitaetsmedizin.de/fhir/StructureDefinition/body-height" />
 <name value="BodyHeight" />

	if your FHIR-observation-sample-file contains an extension, add its
Profile URL, too.

	Add an entry in /config/util/OperationalTemplateData.java with
the name of the opt-file and the template_id-value

Koerpergroesse.opt
[...]
 <template_id>
 <value>Körpergröße</value>
 </template_id>

HEART_RATE("", "Koerpergroesse.opt", "Körpergröße"),

6.4.7. Use the SDK generator to create new classes from the operational template

	(Windows example started from the path
:code:`../openEHR_SDK/generator/target)

java
-jar generator-0.3.7.jar
-opt ../../../fhir-bridge/src/main/resources/opt/Atemfrequenz.opt
-out ../../../fhir-bridge/src/main/java
-package org.ehrbase.fhirbridge.opt

	Linux example (only resource-opt needs to be adapted)

java -jar ../openEHR_SDK/generator/target/generator-0.3.7.jar -opt src/main/resources/opt/KlinischeFrailty.opt -out src/main/java/ -package org.ehrbase.fhirbridge.opt

	Note: Ignore error message regarding missing language packages
(temporary problem; TerminologyProvider).

	Refresh project in the development environment

	New classes and structures (example breathing rate)

$ opt/breathingfrequencycomposition
├── BreathrateComposition.java
├── BreathrateCompositionContainment.java
├── definition
 ├── RespiratoryRateObservation.java
 └── RespiratoryRateObservationContainment.java

 6.5. Flows

6.5. Flows

6.5.1. ‘Create’ operation internal flow

To process a ‘create resource’ request, the FHIR bridge receives the FHIR resource, already parsed to an object, on a ‘resource provider’
(like https://github.com/ehrbase/fhir-bridge/blob/develop/src/main/java/org/ehrbase/fhirbridge/fhir/provider/ObservationResourceProvider.java).

The method annotated with @Create will be the one that receives the resource object. For instance, in ObservationResourceProvider,
the method will be:

@Create
@SuppressWarnings("unused")
public MethodOutcome createObservation(@ResourceParam Observation observation)

If the resource complies with a profile, a check for the profile is done: is the profile supported by the FHIR bridge?

Because of that step, each time a new mapping is added, the profile should also be added to FHIR bridge.

Then the resource is mapped to the correspondent COMPOSITION, depending on the FHIR profile, we determine which COMPOSITION should
be created. Each type of COMPOSITION is determined by an OPT. This is why a profile is needed for each FHIR resource: if we don’t
have a profile, a resource could really be mapped to differnt OPTs.

We created one mapping class for each FHIR profile/OPT pair, in which we implement the bidirectional mappings. For instance, for the
‘body temperature’ FHIR profile, we have a FhirObservationTempOpenehrBodyTemperature class that implements the FHIR -> openEHR mapping.
So we can pass the observation object and get the correspondent openEHR COMPOSITION instance. That class implements the mappings
designed at design time.

Once we have a COMPOSITION instance, the client library is used to commit the COMPOSITION to the openEHR Server. This operation
returns the UID of the COMPOSITION created in the server.

Finally, if everything worked correctly, the FHIR client should get a successful response.

6.5.2. ‘Search’ operation internal flow

To process a ‘search resource’ request, the FHIR bridge receives the search request on a ‘resource provider’
(like https://github.com/ehrbase/fhir-bridge/blob/develop/src/main/java/org/ehrbase/fhirbridge/fhir/provider/ObservationResourceProvider.java).

The method annotated with @Search is the one doing the processing. For instance in ObservationResourceProvider, the method
will be:

@Search
@SuppressWarnings("unused")
public List<Observation> getAllObservations(
 @OptionalParam(name="_profile") UriParam profile,
 @RequiredParam(name=Patient.SP_IDENTIFIER) TokenParam subjectId,
 @OptionalParam(name=Observation.SP_DATE) DateRangeParam dateRange,
 @OptionalParam(name=Observation.SP_VALUE_QUANTITY) QuantityParam qty,
 @OptionalParam(name="bodyTempOption") StringParam bodyTempOption
)

Note: the parameters for the search are defined arbitrarily, it depends on the resource type and the requirements of the client.

For observations, we allow to search by patient identifier, date range, value of the observation (only quantities for now). Because
we have many profiles for the observation resource, we also need a profile paramter as a filter. The ‘bodyTempOption’ parameter is
just a test to evaluate how different implementations of the search functionality work, it will be removed in the future.

More about search parameters: https://hapifhir.io/hapi-fhir/docs/server_plain/rest_operations_search.html

When the method receives the requests, it checks the profile parameter to choose the right handler for the search. For instance,
if the profile is ‘http://hl7.org/fhir/StructureDefinition/bodytemp’, this method will be resolving the search:

List<Observation> processSearchBodyTemperature2(TokenParam subjectId, DateRangeParam dateRange, QuantityParam qty)

What the search resolution does is:

	creates an AQL query using the filters and search parameters, this is ad-hoc per FHIR profile and openEHR OPT.

	executes the AQL query in EHRBASE to get the matching data (should be enough the data to fill the FHIR resources to be retrieved)

	the openEHR query results are processed, mapping the openEHR data to the FHIR resource structure

	each FHIR resource is stored in a list to be retrieved

	the ‘resource provider’ receives the list and returns it

	HAPI FHIR does the work of serializing that list to JSON, and that is what is retrieved to the FHIR client

6.5.3. ‘Read’ operation internal flow

To process a ‘read resource’ request, the FHIR bridge receives the get request on a ‘resource provider’
(like https://github.com/ehrbase/fhir-bridge/blob/develop/src/main/java/org/ehrbase/fhirbridge/fhir/provider/ConditionResourceProvider.java).

The method annotated with @Read is the one doing the processing. For instance in ConditionResourceProvider, the method
will be:

@Read()
@SuppressWarnings("unused")
public Condition getConditionById(@IdParam IdType identifier)

The logic on this one is similar to the search but simpler, since there is only one resource to be retrieved, and the
search params are just one: the resource identifier. So a similar AQL query like the one used for the serach is used to
get a COMPOSITION by identifier, we also check that complies with a specific OPT.

The query results are processed, mapping to a FHIR resource and returning that. HAPI FHIR serializes the resource to
JSON and delivers that to the FHIR client.

If the query results are empty, the FHIR bridge returns a 404 Not Found.

 7. Terminology Validation

7. Terminology Validation

This section provides information about external terminology validation using remote terminology services.

7.1. Introduction

Since the last version of the openEHR SDK, EHRbase now offers the validation of external terminologies
in addition to local and openehr ones.

This feature is based on constraints defined in the openEHR templates and allows to validate every
single coded elements in a composition.

The following example demonstrates how to define the constraint in order to validate a coded element
based on the standard value set http://hl7.org/fhir/ValueSet/surface define in HL7 FHIR.

<attributes xsi:type="C_SINGLE_ATTRIBUTE">
 <rm_attribute_name>defining_code</rm_attribute_name>
 <existence>
 <lower_included>true</lower_included>
 <upper_included>true</upper_included>
 <lower_unbounded>false</lower_unbounded>
 <upper_unbounded>false</upper_unbounded>
 <lower>1</lower>
 <upper>1</upper>
 </existence>
 <children xsi:type="C_CODE_REFERENCE">
 <rm_type_name>CODE_PHRASE</rm_type_name>
 <occurrences>
 <lower_included>true</lower_included>
 <upper_included>true</upper_included>
 <lower_unbounded>false</lower_unbounded>
 <upper_unbounded>false</upper_unbounded>
 <lower>1</lower>
 <upper>1</upper>
 </occurrences>
 <node_id/>
 <referenceSetUri>terminology://fhir.hl7.org/ValueSet/$expand?url=http://hl7.org/fhir/ValueSet/surface</referenceSetUri>
 </children>
</attributes>

According to the constraint defined above, a valid composition should look like (using a valid code
coming from http://hl7.org/fhir/ValueSet/surface):

"value": {
 "_type": "DV_CODED_TEXT",
 "value": "Buccal",
 "defining_code": {
 "_type": "CODE_PHRASE",
 "terminology_id": {
 "_type": "TERMINOLOGY_ID",
 "value": "http://hl7.org/fhir/ValueSet/surface"
 },
 "code_string": "B"
 }
}

Otherwise the submitted composition will be rejected by EHRbase indicating the error.

Note

The external terminology validation API available in the openEHR SDK module provides
a generic mechanism that could be extended to support any remote terminology service.

However, please note that current implementation only supports FHIR terminology server.

7.2. Configuration

The following subsections provide information on the configuration of the external terminology
validation in EHRbase.

7.2.1. Configuring EHRbase

EHRbase supports the following properties in order to properly configure the feature:

	Key

	Default Value

	Description

	validation.external-terminology.enabled

	false

	Whether to enable external terminology validation feature.

	validation.external-terminology.fail-on-error

	false

	Indicates if validation should pass in case of connection error.

	validation.external-terminology.provider.*

	
	External terminology provider details.

The following application.yml illustrates how to configure the provider details:

External Terminology Validation Properties
validation:
 external-terminology:
 enabled: true
 fail-on-error: true
 provider:
 fhir-server-1:
 type: fhir
 url: https://r4.ontoserver.csiro.au/fhir
fhir-server-2:
type: fhir
url: https://localhost:9876/fhir

	It is possible to register one or several providers.

	As mention above, fhir is the only type currently supported.

	The url property is the base URL of the terminology server.

7.2.2. Using provider with Two-Way SSL

If the remote terminology server requires to establish a communication channel using Two-Way SSL (Mutual Authentication),
EHRBase can setup the SSL context used by HTTP client with the following configuration properties:

	Key

	Default Value

	Description

	client.ssl.enabled

	false

	Whether to enable SSL support.

	client.ssl.key-password

	
	Password used to access the key in the key store.

	client.ssl.key-store

	
	Path to the key store.

	client.ssl.key-store-password

	
	Password used to access the key store.

	client.ssl.key-store-type

	
	Type of the key store.

	client.ssl.trust-store

	
	Path to the trust store.

	client.ssl.trust-store-password

	
	Password used to access the trust store.

	client.ssl.trust-store-type

	
	Type of the trust store.

The following application.yml illustrates how to configure the SSL context:

SSL Properties (used by Spring WebClient and Apache HTTP Client)
client:
 ssl:
 enabled: true
 key-password: MySecretPassword
 key-store: C:/ehrbase/config/keystore.p12
 key-store-password: Azerty123456
 key-store-type: pkcs12
 trust-store: C:/ehrbase/config/truststore.p12
 trust-store-password: Qwerty123456
 trust-store-type: pkcs12

 Index

Index

 Release Notes EHRbase 0.10.0 (alpha)

Release Notes EHRbase 0.10.0 (alpha)

This is the alpha release of EHRbase (2020-01-10). This means that the basic set of functions has been implemented. Please be aware that the
current state can be used to develop openEHR applications but should not be used for real patient data in production.

The following changes are included in this version:

	openEHR REST API DIRECTORY Endpoints

	openEHR REST API EHR_STATUS Endpoints (including other_details)

	Spring Transactions: EHRbase now ensures complete rollback if part of a transaction fails.

	Improved Template storage: openEHR Templates are stored inside the postgres database instead of the file system (including handling of duplicates)

	AQL queries with partial paths return data in canonical json format (including full compositions)

	Multimedia data can be correctly stored and retrieved

	Spring configuration allows setting the System ID

	Validation of openEHR Terminology (openEHR terminology codes are tested against an internal terminology service)

	Order of columns in AQL result sets are now reliably preserved (https://github.com/ehrbase/ehrbase/issues/37)

	Some projection issues for EHR attributes have been resolved in AQL

	Fixed error regarding DISTINCT operator in AQL (https://github.com/ehrbase/ehrbase/issues/50)

	Fixed null pointer exceptions that could occur in persistent compositions

	Lots of new conformance tests for QUERY Endpoints

General Features

	openEHR Reference Model Version 1.0.4

	Serialisation of Reference Model Objects in Canonical JSON and XML

	Archetype Definition Language 1.4

	Data Validation against Operational Templates

	openEHR REST API Endpoints (see below for details)

openEHR REST API

Based on the official openEHR REST API [https://specifications.openehr.org/releases/ITS-REST/latest/] the following endpoints are implemented:

	EHR (CREATE EHR, CREATE EHR with Id)

	EHR_STATUS

	COMPOSITION (Create, Update, Delete, Get Composition by Version Id, Get composition at time)

	CONTRIBUTION (Create, Get of compositions. Other versioned object like EHR_STATUS coming soonly)

	DIRECTORY

	QUERY (Execute ad-hoc (non-stored) AQL Query, Execute stored query, parameters))

	STORED_QUERY (List Stored Queries, Store a query, Get stored query, delete, parameters)

	ADL 1.4 TEMPLATE (Upload a Template, List Templates, Get Template)

Note

The Swagger UI is generally WIP and currently does not distinguish between implemented endpoints and stubs! This means that you will see some endpoints that you cannot use)

Note

The data format for contributions sent through the REST API is not yet defined in the openEHR. Please refer to the examples. Also note that the format might be subject of change.

Conformance Tests

EHRbase ships with a set of tests verifying the conformance with the openEHR REST API. For now the tests include the following endpoints:

	EHR

	EHR_STATUS

	COMPOSITION

	CONTRIBUTION

	ADL 1.4 TEMPLATE

	DIRECTORY

	QUERY

What (basic) features you might miss

	VERSIONED_OBJECT Endpoints are not implemented

	Authentication is not implemented (planned to be implemented using Spring Security)

	Connection to external terminology service (like FHIR TS) is not yet supported

	EHR functions like is_modifyable and is_queryable are not yet supported

Known Issues

As EHRbase is still in alpha status, there are plenty of known issues. If you try things out, please be aware that the
following issues are known and documented:

Archetype Query Language

	ehr/uid projection not supported (EHRBASE supports ehr/uid/value but not ehr/uid)

SELECT e/uid, e/time_created, e/system_id FROM EHR e

	Not supported variables in archetype_id predicates

select e/ehr_id/value, e/time_created/value, e/system_id/value from EHR
e CONTAINS COMPOSITION c [$archetype_id]

	TIMEWINDOW keyword is not supported

SELECT e/ehr_id/value FROM EHR e TIMEWINDOW PT12H/2019-10-24

 Release Notes EHRbase 0.11.0 (alpha)

Release Notes EHRbase 0.11.0 (alpha)

This release of EHRbase (2020-03-03) provides several improvements, especially regarding stability and bug fixes. However, we consider EHRbase to be
still in alpha status.

The following changes are included in this version:

Added

	Docker and docker-compose support for both application and database

	Get folder with version_at_time parameter

	Get Folder with path parameter

Changed

	FasterXML Jackson version raised to 2.10.2

	Java version raised from 8 to 11

	Jooq version raised to 3.12.3

	Spring Boot raised to version 2

Fixed

	Response code when composition is logically deleted (see: https://github.com/ehrbase/ehrbase/pull/144)

	Response and PREFER header handling of /ehr endpoints (see: https://github.com/ehrbase/ehrbase/pull/165)

	Deserialization of EhrStatus attributes is_modifiable and is_queryable are defaulting to true now (see: https://github.com/ehrbase/ehrbase/pull/158)

	Updating of composition with invalid template (e.g. completely different template than the previous version) (see: https://github.com/ehrbase/ehrbase/pull/166)

	Folder names are checked for duplicates (see: https://github.com/ehrbase/ehrbase/pull/168)

	AQL parser threw an unspecific exception when an alias was used in a WHERE clause (https://github.com/ehrbase/ehrbase/pull/149)

	Improved exception handling in composition validation (see: https://github.com/ehrbase/ehrbase/pull/147)

	Improved Reference Model validation (see: https://github.com/ehrbase/ehrbase/pull/147)

	Error when reading a composition that has a provider name set(see: https://github.com/ehrbase/ehrbase/pull/143)

	Allow content to be null inside a composition (see: https://github.com/ehrbase/ehrbase/pull/129)

	Fixed deletion of compositions through a contribution (see: https://github.com/ehrbase/ehrbase/pull/128)

	Start time of a composition was not properly updated (see: https://github.com/ehrbase/ehrbase/pull/137)

	Fixed validation of null values on participations (see: https://github.com/ehrbase/ehrbase/pull/132)

	Order by in AQL did not work properly (see: https://github.com/ehrbase/ehrbase/pull/112)

	Order of variables in AQL result was not preserved (see: https://github.com/ehrbase/ehrbase/pull/103)

	Validation of compositions for unsupported language(see: https://github.com/ehrbase/ehrbase/pull/107)

	Duplicated ehr attributes in query due to cartesian product (see: https://github.com/ehrbase/ehrbase/pull/106)

	Retrieve of EHR_STATUS gave Null Pointer Exception for non-existing EHRs (see: https://github.com/ehrbase/ehrbase/pull/136)

	Correct resolution of ehr/system_id in AQL (see: https://github.com/ehrbase/ehrbase/pull/102)

	Detection of duplicate aliases in aql select (see: https://github.com/ehrbase/ehrbase/pull/98)

General Features

	openEHR Reference Model Version 1.0.4

	Serialisation of Reference Model Objects in Canonical JSON and XML

	Archetype Definition Language 1.4

	Data Validation against Operational Templates

	openEHR REST API Endpoints (see below for details)

openEHR REST API

Based on the official openEHR REST API [https://specifications.openehr.org/releases/ITS-REST/latest/] the following endpoints are implemented:

	EHR (CREATE EHR, CREATE EHR with Id)

	EHR_STATUS

	COMPOSITION (Create, Update, Delete, Get Composition by Version Id, Get composition at time)

	CONTRIBUTION (Create, Get of compositions. Other versioned object like EHR_STATUS coming soonly)

	DIRECTORY (Create, Update, Delete, Get folder in directory version, get folder in directory version at time)

	QUERY (Execute ad-hoc (non-stored) AQL Query, Execute stored query, parameters))

	STORED_QUERY (List Stored Queries, Store a query, Get stored query, delete, parameters)

	ADL 1.4 TEMPLATE (Upload a Template, List Templates, Get Template)

Note

The Swagger UI is generally WIP and currently does not distinguish between implemented endpoints and stubs! This means that you will see some endpoints that you cannot use)

Note

The data format for contributions sent through the REST API is not yet defined in the openEHR. Please refer to the examples. Also note that the format might be subject of change.

Conformance Tests

EHRbase ships with a set of tests verifying the conformance with the openEHR REST API. For now the tests include the following endpoints:

	EHR

	EHR_STATUS

	COMPOSITION

	CONTRIBUTION

	ADL 1.4 TEMPLATE

	DIRECTORY

	QUERY

What (basic) features you might miss

	VERSIONED_OBJECT Endpoints are not implemented

	Authentication is not implemented (planned to be implemented using Spring Security)

	Connection to external terminology service (like FHIR TS) is not yet supported

	EHR functions like is_modifyable and is_queryable are not yet supported

Known Issues

As EHRbase is still in alpha status, there are plenty of known issues. If you try things out, please be aware that the
following issues are known and documented:

Archetype Query Language

	ehr e projection not supported

	Not supported variables in archetype_id predicates

select e/ehr_id/value, e/time_created/value, e/system_id/value from EHR
e CONTAINS COMPOSITION c [$archetype_id]

	TIMEWINDOW keyword is not supported

SELECT e/ehr_id/value FROM EHR e TIMEWINDOW PT12H/2019-10-24

 Release Notes EHRbase 0.12.0 (alpha)

Release Notes EHRbase 0.12.0 (alpha)

This release of EHRbase (v0.12.0, March 31 2020) adds basic authentication (see details below) and allows to overwrite templates. we consider EHRbase to be
still in alpha status.

The following changes are included in this version:

Added

	Basic Authentication as opt-in (see: https://github.com/ehrbase/ehrbase/pull/200)

	Allow Templates can now be overwritten via spring configuration (see: https://github.com/ehrbase/ehrbase/pull/194)

	Prototypical support of FHIR Terminology Services within AQL queries (see: https://github.com/ehrbase/ehrbase/pull/162)

Fixed

	Fixes response code on /ehr PUT with invalid ID (see: https://github.com/ehrbase/project_management/issues/163)

	Fixes STATUS w/ empty subject bug (see: https://github.com/ehrbase/ehrbase/pull/196)

	Fixes storage of party self inside compositions (see: https://github.com/ehrbase/ehrbase/pull/195)

	Added support of AQL query in the form of c/composer (see: https://github.com/ehrbase/ehrbase/pull/184)

	Java error with UTF-8 encoding resolved (see: https://github.com/ehrbase/ehrbase/pull/173)

	AQL refactoring and fixes to support correct canonical json representation (see: https://github.com/ehrbase/ehrbase/pull/201)

	fix terminal value test for non DataValue ‘value’ attribute (see: https://github.com/ehrbase/ehrbase/pull/189)

General Features

	openEHR Reference Model Version 1.0.4

	Serialisation of Reference Model Objects in Canonical JSON and XML

	Archetype Definition Language 1.4

	Data Validation against Operational Templates

	openEHR REST API Endpoints (see below for details)

openEHR REST API

Based on the official openEHR REST API [https://specifications.openehr.org/releases/ITS-REST/latest/] the following endpoints are implemented:

	EHR (CREATE EHR, CREATE EHR with Id)

	EHR_STATUS

	COMPOSITION (Create, Update, Delete, Get Composition by Version Id, Get composition at time)

	CONTRIBUTION (Create, Get of compositions. Other versioned object like EHR_STATUS coming soonly)

	DIRECTORY (Create, Update, Delete, Get folder in directory version, get folder in directory version at time)

	QUERY (Execute ad-hoc (non-stored) AQL Query, Execute stored query, parameters))

	STORED_QUERY (List Stored Queries, Store a query, Get stored query, delete, parameters)

	ADL 1.4 TEMPLATE (Upload a Template, List Templates, Get Template)

Note

The Swagger UI is generally WIP and currently does not distinguish between implemented endpoints and stubs! This means that you will see some endpoints that you cannot use)

Note

The data format for contributions sent through the REST API is not yet defined in the openEHR. Please refer to the examples. Also note that the format might be subject of change.

Conformance Tests

EHRbase ships with a set of tests verifying the conformance with the openEHR REST API. For now the tests include the following endpoints:

	EHR

	EHR_STATUS

	COMPOSITION

	CONTRIBUTION

	ADL 1.4 TEMPLATE

	DIRECTORY

	QUERY

What (basic) features you might miss

	VERSIONED_OBJECT Endpoints are not implemented

	EHR functions like is_modifyable and is_queryable are not yet supported

Known Issues

As EHRbase is still in alpha status, there are plenty of known issues. If you try things out, please be aware that the
following issues are known and documented:

Archetype Query Language

	ehr e projection not supported

	Not supported variables in archetype_id predicates

select e/ehr_id/value, e/time_created/value, e/system_id/value from EHR
e CONTAINS COMPOSITION c [$archetype_id]

	TIMEWINDOW keyword is not supported

SELECT e/ehr_id/value FROM EHR e TIMEWINDOW PT12H/2019-10-24

 Release Notes EHRbase 0.13.0 (beta)

Release Notes EHRbase 0.13.0 (beta)

This release of EHRbase (v0.13.0, May 14 2020) is the first beta release.

The following changes are included in this version:

Added

	Added support for various functions in AQL (aggregation, statistical, string etc.) (see: https://github.com/ehrbase/ehrbase/pull/223/)

Changed

	Update of AQL-Query test suite (see: https://github.com/ehrbase/ehrbase/pull/179)

Fixed

	Force a default timezone if not present for context/start_time and context/end_time if specified (https://github.com/ehrbase/ehrbase/pull/215)

	Representation of version uid of EHR_STATUS (see: https://github.com/ehrbase/ehrbase/pull/180)

	Refactored support of PartyProxy and ObjectId in both CRUD and AQL operations (see https://github.com/ehrbase/ehrbase/pull/248)

	Fix support of mandatory attributes in ENTRY specialization including rm_version (see https://github.com/ehrbase/ehrbase/pull/247)

	Directory IDs from input path or If-Match header must now be in version_uid format (see https://github.com/ehrbase/ehrbase/pull/183)

	Folder IDs inside body are now parsed correctly (see: https://github.com/ehrbase/ehrbase/pull/183)

	PreconditionFailed error response contains proper ETag and Location headers (see: https://github.com/ehrbase/ehrbase/pull/183)

	Added validation checking for other_details and ehr_status. (see: https://github.com/ehrbase/ehrbase/pull/207)

	Supports archetype_node_id and name for EHR_STATUS (see: https://github.com/ehrbase/ehrbase/pull/207)

	Fixes bad canonical encoding for observation/data/origin (see: https://github.com/ehrbase/ehrbase/pull/213)

	POST without accept header for ehr, composition and contribution endpoints (see: https://github.com/ehrbase/ehrbase/pull/199)

General Features

	openEHR Reference Model Version 1.0.4

	Serialisation of Reference Model Objects in Canonical JSON and XML

	Archetype Definition Language 1.4

	Data Validation against Operational Templates

	openEHR REST API Endpoints (see below for details)

openEHR REST API

Based on the official openEHR REST API [https://specifications.openehr.org/releases/ITS-REST/latest/] the following endpoints are implemented:

	EHR (CREATE EHR, CREATE EHR with Id)

	EHR_STATUS

	COMPOSITION (Create, Update, Delete, Get Composition by Version Id, Get composition at time)

	CONTRIBUTION (Create, Get of compositions. Other versioned object like EHR_STATUS coming soonly)

	DIRECTORY (Create, Update, Delete, Get folder in directory version, get folder in directory version at time)

	QUERY (Execute ad-hoc (non-stored) AQL Query, Execute stored query, parameters))

	STORED_QUERY (List Stored Queries, Store a query, Get stored query, delete, parameters)

	ADL 1.4 TEMPLATE (Upload a Template, List Templates, Get Template)

Note

The Swagger UI is generally WIP and currently does not distinguish between implemented endpoints and stubs! This means that you will see some endpoints that you cannot use)

Note

The data format for contributions sent through the REST API is not yet defined in the openEHR. Please refer to the examples. Also note that the format might be subject of change.

Conformance Tests

EHRbase ships with a set of tests verifying the conformance with the openEHR REST API. For now the tests include the following endpoints:

	EHR

	EHR_STATUS

	COMPOSITION

	CONTRIBUTION

	ADL 1.4 TEMPLATE

	DIRECTORY

	QUERY

What (basic) features you might miss

	VERSIONED_OBJECT Endpoints are not implemented

	EHR functions like is_modifyable and is_queryable are not yet supported

Known Issues

As EHRbase is still in alpha status, there are plenty of known issues. If you try things out, please be aware that the
following issues are known and documented:

Archetype Query Language

	ehr e projection not supported

	Not supported variables in archetype_id predicates

select e/ehr_id/value, e/time_created/value, e/system_id/value from EHR
e CONTAINS COMPOSITION c [$archetype_id]

	TIMEWINDOW keyword is not supported

SELECT e/ehr_id/value FROM EHR e TIMEWINDOW PT12H/2019-10-24

 Release Notes EHRbase 0.14.0 (beta)

Release Notes EHRbase 0.14.0 (beta)

This release of EHRbase (v0.14.0, October 1st 2020) is the second beta release.

The following changes are included in this version:

Added

	Add admin template API functionality (see: https://github.com/ehrbase/ehrbase/pull/301)

	Add admin API endpoint stubs (see: https://github.com/ehrbase/ehrbase/pull/280)

	Add support for FeederAudit in Locatable. Refactored Composition Serializer for DB encoding (see https://github.com/ehrbase/ehrbase/tree/feature/311_feeder_audit, https://github.com/ehrbase/openEHR_SDK/tree/feature/311_feeder_audit)

	Change the strategy to resolve CONTAINS in AQL (https://github.com/ehrbase/ehrbase/pull/276)

	Persist caches to java.io.tmpdir (see: https://github.com/ehrbase/ehrbase/pull/308)

	Precalculate containment tree from OPT template (see https://github.com/ehrbase/ehrbase/pull/312)

Changed

	Detection of duplicate directories on EHR on POST

	Using ObjectVersionId for DIRECTORY Controller and Service Layers (see: https://github.com/ehrbase/ehrbase/pull/297)

	Added Junit5 support via spring-boot-starter-test (https://github.com/ehrbase/ehrbase/pull/298)

	Enable cartesian products on embedded arrays in JSONB (see https://github.com/ehrbase/ehrbase/pull/309)

	Use new OPT-Parser from sdk (see https://github.com/ehrbase/ehrbase/pull/314)

	Add CORS config to enable clients to detect auth method (see https://github.com/ehrbase/ehrbase/pull/354)

Fixed

	Detect duplicates on POST Directory (see: https://github.com/ehrbase/ehrbase/pull/281)

	Support context-less composition (see: https://github.com/ehrbase/ehrbase/pull/288)

	Fixed missing AQL level of parenthesis when using NOT in WHERE clause (see https://github.com/ehrbase/ehrbase/pull/293)

	Allow duplicated paths in AQL resultsets (see: https://github.com/ehrbase/ehrbase/issues/263)

	Transaction timestamps are now truncated to ms (see: https://github.com/ehrbase/ehrbase/pull/299)

	Change response code on not found directory to 412 if not found (see: https://github.com/ehrbase/ehrbase/pull/304)

General Features

	openEHR Reference Model Version 1.0.4

	Serialisation of Reference Model Objects in Canonical JSON and XML

	Archetype Definition Language 1.4

	Data Validation against Operational Templates

	openEHR REST API Endpoints (see below for details)

openEHR REST API

Based on the official openEHR REST API [https://specifications.openehr.org/releases/ITS-REST/latest/] the following endpoints are implemented:

	EHR (CREATE EHR, CREATE EHR with Id)

	EHR_STATUS

	COMPOSITION (Create, Update, Delete, Get Composition by Version Id, Get composition at time)

	CONTRIBUTION (Create, Get of compositions. Other versioned object like EHR_STATUS coming soonly)

	DIRECTORY (Create, Update, Delete, Get folder in directory version, get folder in directory version at time)

	QUERY (Execute ad-hoc (non-stored) AQL Query, Execute stored query, parameters))

	STORED_QUERY (List Stored Queries, Store a query, Get stored query, delete, parameters)

	ADL 1.4 TEMPLATE (Upload a Template, List Templates, Get Template)

Note

The Swagger UI is generally WIP and currently does not distinguish between implemented endpoints and stubs! This means that you will see some endpoints that you cannot use)

Note

The data format for contributions sent through the REST API is not yet defined in the openEHR. Please refer to the examples. Also note that the format might be subject of change.

Conformance Tests

EHRbase ships with a set of tests verifying the conformance with the openEHR REST API. For now the tests include the following endpoints:

	EHR

	EHR_STATUS

	COMPOSITION

	CONTRIBUTION

	ADL 1.4 TEMPLATE

	DIRECTORY

	QUERY

 Release Notes EHRbase 0.15.0 (beta)

Release Notes EHRbase 0.15.0 (beta)

This release of EHRbase (v0.14.0, February 25 2021) is the third beta release.

The following changes are included in this version:

Added

	Adds Admin API endpoints: Del EHR, Del Composition and Del Contribution (see: https://github.com/ehrbase/ehrbase/pull/344)

	Add ATNA logging configuration capabilities (see https://github.com/ehrbase/ehrbase/pull/355)

	Support for EHR_STATUS and (partial) FOLDER version objects in contributions (see: https://github.com/ehrbase/ehrbase/pull/372)

	Add status endpoint to retrieve version information on running EHRbase instance and for heartbeat checks. (see: https://github.com/ehrbase/ehrbase/pull/393)

	Add /status/info endpoint using actuator for basic info on running app (see: https://github.com/ehrbase/ehrbase/pull/400)

	Add /status/health endpoint for kubernetes liveness and readiness probes (see: https://github.com/ehrbase/ehrbase/pull/400)

	Add /status/env endpoint for environment information (see: https://github.com/ehrbase/ehrbase/pull/400)

	Add /status/metrics endpoint for detailed metrics on specific topics (db connection, http requests, etc.) (see: https://github.com/ehrbase/ehrbase/pull/400)

	Add /status/prometheus endpoint for prometheus metrics (see: https://github.com/ehrbase/ehrbase/pull/400)

	Endpoints and integration tests for VERISONED_EHR_STATUS (see: https://github.com/ehrbase/ehrbase/pull/415)

Changed

	support AQL querying on full EHR (f.e. SELECT e) (see)

	Update Dockerfile for usage with metrics and status (see https://github.com/ehrbase/ehrbase/pull/408)

	Refactored DB handling of contributions, removed misleading CONTIRUBITON_HISTORY table (see https://github.com/ehrbase/ehrbase/pull/416)

General Features

	openEHR Reference Model Version 1.0.4

	Serialisation of Reference Model Objects in Canonical JSON and XML

	Archetype Definition Language 1.4

	Data Validation against Operational Templates

	openEHR REST API Endpoints (see below for details)

openEHR REST API

Based on the official openEHR REST API [https://specifications.openehr.org/releases/ITS-REST/latest/] the following endpoints are implemented:

	EHR (CREATE EHR, CREATE EHR with Id)

	EHR_STATUS

	COMPOSITION (Create, Update, Delete, Get Composition by Version Id, Get composition at time)

	CONTRIBUTION (Create, Get of compositions. Other versioned object like EHR_STATUS coming soonly)

	DIRECTORY (Create, Update, Delete, Get folder in directory version, get folder in directory version at time)

	QUERY (Execute ad-hoc (non-stored) AQL Query, Execute stored query, parameters))

	STORED_QUERY (List Stored Queries, Store a query, Get stored query, delete, parameters)

	ADL 1.4 TEMPLATE (Upload a Template, List Templates, Get Template)

Note

The Swagger UI is generally WIP and currently does not distinguish between implemented endpoints and stubs! This means that you will see some endpoints that you cannot use)

Note

The data format for contributions sent through the REST API is not yet defined in the openEHR. Please refer to the examples. Also note that the format might be subject of change.

Conformance Tests

EHRbase ships with a set of tests verifying the conformance with the openEHR REST API. For now the tests include the following endpoints:

	EHR

	EHR_STATUS

	COMPOSITION

	CONTRIBUTION

	ADL 1.4 TEMPLATE

	DIRECTORY

	QUERY

 Release Notes EHRbase 0.16.0 (beta)

Release Notes EHRbase 0.16.0 (beta)

This release of EHRbase (v0.16.0, March 30 2021) is the fourth beta release.

The following changes are included in this version:

Added

	Endpoints and integration tests for VERSIONED_COMPOSITION (see: https://github.com/ehrbase/ehrbase/pull/448)

	ATNA Logging for composition endpoints, querying and operations on the EHR object (see: https://github.com/ehrbase/ehrbase/pull/452)

	EHRbase Release Checklist (see: https://github.com/ehrbase/ehrbase/pull/451)

	CACHE_ENABLED ENV to Dockerfile (see: https://github.com/ehrbase/ehrbase/pull/467)

Changed

	Updated the SDK dependency to the latest version (see: https://github.com/ehrbase/ehrbase/pull/463)

	Force retrieval of operational template from DB (see: https://github.com/ehrbase/ehrbase/pull/468)

Fixed

	WHERE field construct (see: https://github.com/ehrbase/ehrbase/pull/439)

	Inconsistent behavior in SMICS Virology Query (see: https://github.com/ehrbase/ehrbase/pull/456)

	Bunch of AQL issues (see: https://github.com/ehrbase/ehrbase/pull/461)

	AQL: Error in processing OR in Contains clause (see: https://github.com/ehrbase/ehrbase/pull/462)

	Cache issue on Startup (see: https://github.com/ehrbase/ehrbase/pull/465)

General Features

	openEHR Reference Model Version 1.0.4

	Serialisation of Reference Model Objects in Canonical JSON and XML

	Archetype Definition Language 1.4

	Data Validation against Operational Templates

	openEHR REST API Endpoints (see below for details)

openEHR REST API

Based on the official openEHR REST API [https://specifications.openehr.org/releases/ITS-REST/latest/] the following endpoints are implemented:

	EHR (CREATE EHR, CREATE EHR with Id)

	EHR_STATUS

	COMPOSITION (Create, Update, Delete, Get Composition by Version Id, Get composition at time)

	CONTRIBUTION (Create, Get of compositions. Other versioned object like EHR_STATUS coming soonly)

	DIRECTORY (Create, Update, Delete, Get folder in directory version, get folder in directory version at time)

	QUERY (Execute ad-hoc (non-stored) AQL Query, Execute stored query, parameters))

	STORED_QUERY (List Stored Queries, Store a query, Get stored query, delete, parameters)

	ADL 1.4 TEMPLATE (Upload a Template, List Templates, Get Template)

Note

The Swagger UI is generally WIP and currently does not distinguish between implemented endpoints and stubs! This means that you will see some endpoints that you cannot use)

Note

The data format for contributions sent through the REST API is not yet defined in the openEHR. Please refer to the examples. Also note that the format might be subject of change.

Conformance Tests

EHRbase ships with a set of tests verifying the conformance with the openEHR REST API. For now the tests include the following endpoints:

	EHR

	EHR_STATUS

	COMPOSITION

	CONTRIBUTION

	ADL 1.4 TEMPLATE

	DIRECTORY

	QUERY

 Release Notes EHRbase 0.17.1 (beta)

Release Notes EHRbase 0.17.1 (beta)

This release of EHRbase (v0.17.1, Augus 12 2021) is a beta release.

The following changes are included in this version:

Added

	Default handling for audit metadata (see: https://github.com/ehrbase/ehrbase/pull/552)

Changed

	Updated the SDK dependency to the latest version (see: https://github.com/ehrbase/ehrbase/pull/565)

	Refactored versioned object (interfaces) on service and access layer (see: https://github.com/ehrbase/ehrbase/pull/552)

Fixed

	Assigner in DV_IDENTIFIER not selected in aql (see: https://github.com/ehrbase/ehrbase/pull/561)

	ehr_status.uuid not selects via aql (see: https://github.com/ehrbase/ehrbase/pull/561)

	DB migration file conflict (see: https://github.com/ehrbase/ehrbase/pull/564)

	Ddmin delete of multiple status versions (see: https://github.com/ehrbase/ehrbase/pull/552)

General Features

	openEHR Reference Model Version 1.0.4

	Serialisation of Reference Model Objects in Canonical JSON and XML

	Archetype Definition Language 1.4

	Data Validation against Operational Templates

	openEHR REST API Endpoints (see below for details)

openEHR REST API

Based on the official openEHR REST API [https://specifications.openehr.org/releases/ITS-REST/latest/] the following endpoints are implemented:

	EHR (CREATE EHR, CREATE EHR with Id)

	EHR_STATUS

	COMPOSITION (Create, Update, Delete, Get Composition by Version Id, Get composition at time)

	CONTRIBUTION (Create, Get of compositions. Other versioned object like EHR_STATUS coming soonly)

	DIRECTORY (Create, Update, Delete, Get folder in directory version, get folder in directory version at time)

	QUERY (Execute ad-hoc (non-stored) AQL Query, Execute stored query, parameters))

	STORED_QUERY (List Stored Queries, Store a query, Get stored query, delete, parameters)

	ADL 1.4 TEMPLATE (Upload a Template, List Templates, Get Template)

Note

The Swagger UI is generally WIP and currently does not distinguish between implemented endpoints and stubs! This means that you will see some endpoints that you cannot use)

Note

The data format for contributions sent through the REST API is not yet defined in the openEHR. Please refer to the examples. Also note that the format might be subject of change.

Conformance Tests

EHRbase ships with a set of tests verifying the conformance with the openEHR REST API. For now the tests include the following endpoints:

	EHR

	EHR_STATUS

	COMPOSITION

	CONTRIBUTION

	ADL 1.4 TEMPLATE

	DIRECTORY

	QUERY

 Release Notes EHRbase 0.17.2 (beta)

Release Notes EHRbase 0.17.2 (beta)

This release of EHRbase (v0.17.2, September 9 2021) is a beta release.

The following changes are included in this version:

Added

	Github Action worklows to deploy multiarch images (latest, next, version-tag) to Docker Hub (see: https://github.com/ehrbase/ehrbase/pull/578)

Changed

	Removes SELECT statement when PartyProxy object is empty (see: https://github.com/ehrbase/ehrbase/pull/581)

Fixed

	Accept header with multiple MIME types causes an IllegalArgumentException (see: https://github.com/ehrbase/ehrbase/pull/583)

	Composition version Uid schema in EhrScape API (see: https://github.com/ehrbase/ehrbase/pull/520)

	Terminology Service calls from within AQL queries does not work (see: https://github.com/ehrbase/ehrbase/pull/572)

General Features

	openEHR Reference Model Version 1.0.4

	Serialisation of Reference Model Objects in Canonical JSON and XML

	Archetype Definition Language 1.4

	Data Validation against Operational Templates

	openEHR REST API Endpoints (see below for details)

openEHR REST API

Based on the official openEHR REST API [https://specifications.openehr.org/releases/ITS-REST/latest/] the following endpoints are implemented:

	EHR (CREATE EHR, CREATE EHR with Id)

	EHR_STATUS

	COMPOSITION (Create, Update, Delete, Get Composition by Version Id, Get composition at time)

	CONTRIBUTION (Create, Get of compositions. Other versioned object like EHR_STATUS coming soonly)

	DIRECTORY (Create, Update, Delete, Get folder in directory version, get folder in directory version at time)

	QUERY (Execute ad-hoc (non-stored) AQL Query, Execute stored query, parameters))

	STORED_QUERY (List Stored Queries, Store a query, Get stored query, delete, parameters)

	ADL 1.4 TEMPLATE (Upload a Template, List Templates, Get Template)

Note

The Swagger UI is generally WIP and currently does not distinguish between implemented endpoints and stubs! This means that you will see some endpoints that you cannot use)

Note

The data format for contributions sent through the REST API is not yet defined in the openEHR. Please refer to the examples. Also note that the format might be subject of change.

Conformance Tests

EHRbase ships with a set of tests verifying the conformance with the openEHR REST API. For now the tests include the following endpoints:

	EHR

	EHR_STATUS

	COMPOSITION

	CONTRIBUTION

	ADL 1.4 TEMPLATE

	DIRECTORY

	QUERY

 Release Notes EHRbase 0.9.0 (pre-alpha)

Release Notes EHRbase 0.9.0 (pre-alpha)

As the initial open source version of EHRbase, this release note is a bit more comprehensive. Please be aware that this is a pre-alpha version. We
will soonly release the alpha version containing EHR_STATUS and DIRECTORY Endpoints of the official openEHR REST API. Please be aware that the
current state can be used to develop openEHR applications but should not be used for real patient data in production.

Here is an overview of the features implemented:

Features

	openEHR Reference Model Version 1.0.4

	Serialisation of Reference Model Objects in Canonical JSON and XML

	Archetype Definition Language 1.4

	Data Validation against Operational Templates

openEHR REST API

Based on the official openEHR REST API [https://specifications.openehr.org/releases/ITS-REST/latest/] the following endpoints are implemented:

	EHR (CREATE EHR, CREATE EHR with Id)

	COMPOSITION (Create, Update, Delete, Get Composition by Version Id, Get composition at time)

	CONTRIBUTION (Create, Get of compositions. Other versioned object like EHR_STATUS coming soonly)

	QUERY (Execute ad-hoc (non-stored) AQL Query, Execute stored query))

	STORED_QUERY (List Stored Queries, Store a query, Get stored query, delete)

	ADL 1.4 TEMPLATE (Upload a Template, List Templates, Get Template)

Note

The Swagger UI is generally WIP and currently does not distinguish between implemented endpoints and stubs! This means that you will see some endpoints that you cannot use)

Note

The data format for contributions sent through the REST API is not yet defined in the openEHR. Please refer to the examples. Also note that the format might be subject of change.

Conformance Tests

EHRbase ships with a set of tests verifying the conformance with the openEHR REST API. For now the tests include the following endpoints:

	EHR

	COMPOSITION

	CONTRIBUTION

	ADL 1.4 TEMPLATE

	DIRECTORY

Java Client Library

The client library has the following features:

	Create EHR

	Upload/Sync Templates

	Send Composition

	Creation of Java (DTO) classes from Operational Templates (OPTs)

What you might miss

	DIRECTORY Endpoints will be added soonly

	EHR_STATUS Endpoints will be added soonly

	VERSIONED_STATUS Endpoints are not implemented

	Authentication is not implemented (planned to be implemented using Spring Security)

	Connection to external terminology service (like FHIR TS) is not yet supported

	EHR functions like is_modifyable and is_queryable are not yet supported

	Database transactions and rollback (planned to implemented using Spring Transaction Management)

Known Issues

As EHRbase is still in a pre-alpha state, there are plenty of known issues. If you try things out, please be aware that the
following issues are known and documented:

Archetype Query Language

Note

As of now, partial paths will return RM objects in the JSON format used by the Better Platform. Canonical JSON will be supported soonly

	ehr/time_created/value projection is not supported

SELECT e/time_created/value FROM EHR e

	ehr/ehr_id projection is not supported (instead, an internal ehr/uid is supported)

SELECT e/ehr_id FROM EHR e

	ehr/uid projection not supported (EHRBASE supports ehr/uid/value but not ehr/uid)

SELECT e/uid, e/time_created, e/system_id FROM EHR e

	Not supported variables in archetype_id predicates

select e/ehr_id/value, e/time_created/value, e/system_id/value from EHR
e CONTAINS COMPOSITION c [$archetype_id]

	composition/language projection not supported

SELECT c/uid/value, c/name/value, c/archetype_node_id, c/language, c/territory, c/category/value
FROM EHR e [ehr_id/value='dd616472-9432-4004-ad85-fd47affb1cc8'] CONTAINS COMPOSITION c

	TIMEWINDOW keyword is not supported

SELECT e/ehr_id/value FROM EHR e TIMEWINDOW PT12H/2019-10-24

Java Client Library

	Occurrences are not recognized (for example events in observations) when auto-generating a dto from an operational template

 EHRbase Integration Tests with Robot Framework

EHRbase Integration Tests with Robot Framework

	Prerequisites

	Test Environment & SUT

	Test Execution (under Linux, Mac & Windows)

	With Robot Command

	With Shell Script

	Example Content Of Shell Script (run_local_tests.sh)

	Local SUT / Manually Controlled SUT

	Usage examples:

	Remote SUT / OR how to execute the tests against other systems

	Preconditions

	Customize your configuration

	Execute test against EHRSCAPE

	Run all tests at one (**not** recommended)

	Run single test suites, one by one (recommended)

	Execution Control - Test Suites & Tags

	CI/CD Pipeline (on CircleCI)

	Errors And Warnings

	Auto-Generated Test Report Summary And Detailed Log

Prerequisites

	Docker, Java 11 & Maven, Python 3.7+ & Pip are installed

	Robot Framework & dependencies are installed (pip install -r requirements.txt)

	Build artefacts created (mvn package –> application/target/application-x.xx.x.jar)

	⚠️ No DB / no server running!

	⚠️ ports 8080 and 5432 not used by any other application! (check it w/ netstat -tulpn)

Test Environment & SUT

The test environment of this project consists of three main parts

1) EHRbase OpenEHR server (application-*.jar)

2) PostgreSQL database

3) OS with Docker, Java runtime, Python runtime, Robot Framework (generic test automation framework)

Let’s refer to the first two parts as the SUT (system under test). The tests are implemented in a way that by default Robot Framework (RF) will take control of the SUT. That means to execute the tests locally all you have to do is to ensure your host machine meets required prerequisites. RF will take care of properly starting up, restarting and shutting down SUT as it is required for test execution. There is an option to hand over control of SUT to you, though - described in section Manually Controlled SUT.

Test Execution (under Linux, Mac & Windows)

In general tests are executed by 1) cd into tests/ folder and 2) call the ``robot``** command with the folder wich contains the test suites as argument. Alternatively you can use prepared shell script: **run_local_tests.sh.

With Robot Command

The following examples will run all test-cases that are inside robot/ folder

1) from project's root
cd tests/

2) call robot command
robot robot/ # Linux
robot ./robot/ # Mac OS
robot .\robot # Windows

Everything between robot command and the last argument are commandline option to fine control test execution and the processing of test results. Examples:

QUICK COPY/PASTE EXAMPLES TO RUN ONLY A SPECIFIC TEST-SUITE

robot -i composition -d results --noncritical not-ready -L TRACE robot/COMPOSITION_TESTS/
robot -i contribution -d results --noncritical not-ready -L TRACE robot/CONTRIBUTION_TESTS/
robot -i directory -d results --noncritical not-ready -L TRACE robot/DIRECTORY_TESTS/
robot -i ehr_service -d results --noncritical not-ready -L TRACE robot/EHR_SERVICE_TESTS/
robot -i ehr_status -d results --noncritical not-ready -L TRACE robot/EHR_STATUS_TESTS/
robot -i knowledge -d results --noncritical not-ready -L TRACE robot/KNOWLEDGE_TESTS/
robot -i aqlANDempty_db -d results --noncritical not-ready -L TRACE robot/QUERY_SERVICE_TESTS/
robot -i aqlANDloaded_db -d results --noncritical not-ready -L TRACE robot/QUERY_SERVICE_TESTS/

With Shell Script

Use shell script to run all available tests at once or use it as a reference to see which command line options [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#using-command-line-options] are available to the robot command. Examples below demonstrate it’s usage:

Linux
. run_local_tests.sh

Mac OS
./run_local_tests.hs

Windows
robot -d results --noncritical not-ready -L TRACE robot/

(No script there yet. TODO: create a proper .bat file)

Example Content Of Shell Script (run_local_tests.sh)

robot --include contribution \
 --exclude TODO -e future -e obsolete -e libtest \
 --loglevel TRACE \
 --noncritical not-ready \
 --flattenkeywords for \
 --flattenkeywords foritem \
 --flattenkeywords name:_resources.* \
 --outputdir results \
 --name CONTRIBUTION \
 robot/CONTRIBUTION_TESTS/

Local SUT / Manually Controlled SUT

In case you don’t want Robot to start up and shut down server and database for you - i.e. during local development iterations - there is a command line option (-v nodocker) to turn this off. This option should be used with some precaution, though!

⚠️

Test Suite Setups and Teardowns will NOT be orchestrated by Robot any more. This can lead to issues when trying to run ALL tests at once (i.e. with robot robot/) - tests may impact each other and fail. Thus you will have to pass at least a test suite folder as argument or limit test selection by using tags to avoid this (see section below). Moreover

	you have to start the server with cache DISABLED (--cache.enabled=false)

	you have to ensure your server configuration applies to Robot’s DEV configuration (see tests/robot/_resources/suite_settings.robot)

	you have to ensure your DB configuration applies to the one described in main README

	you have to restart server and rollback/reset database properly

	when in doubt about your results, compare them with results in CI pipeline

	YOU HAVE BEEN WARNED!

⚠️

Usage Examples:

robot --variable nodocker:true robot/TEST_SUITE_FOLDER

short variant
robot -v nodocker robot/TEST_SUITE_FOLDER
robot -v nodocker -i get_ehr robot/EHR_SERVICE_TESTS

Robot will print proper warning in console if it can’t connect to server or database:

[WARN] //
[WARN] // ///
[WARN] // YOU HAVE CHOSEN TO START YOUR OWN TEST ENVIRONMENT! ///
[WARN] // BUT IT IS NOT AVAILABLE OR IS NOT SET UP PROPERLY! ///
[WARN] // ///
[WARN] //
[WARN]
[WARN] [check "Manually Controlled SUT" in test README]
[WARN] [https://github.com/ehrbase/ehrbase/blob/develop/tests/README.md#manually-sut]
[WARN]
[ERROR] ABORTING EXECUTION DUE TO TEST ENVIRONMENT ISSUES:
[ERROR] Could not connect to server!
[ERROR] Could not connect to database!

Remote SUT / OR how to execute the tests against other systems

All integration tests in this repository can be executed against other (possiblty remotely accessible) OpenEHR conform systems (other than EHRbase). Here we will demonstrate how to run the test against your own remote system. We’ll use EHRSCAPE as an example configuration. If you don’t have access to EHRSCAPE you’ll have to adjust related parts to your needs.

Preconditions

	the following environment variables have to be available:

BASIC_AUTH (basic auth string for EHRSCAPE, i.e.: export BASIC_AUTH="Basic abc...")
EHRSCAPE_USER
EHRSCAPE_PASSWORD

	Python 3.7+ installed

	Test dependencies installed

cd tests
pip install -r requirements.txt

Customize your configuration

Open tests/robot/_resources/suite_settings.robot and adjust the following part to your needs if you don’t have access to EHRSCAPE. If you do any changes here, remember to adjust your environment variables in step 1)

&{EHRSCAPE} URL=https://rest.ehrscape.com/rest/openehr/v1
... HEARTBEAT=https://rest.ehrscape.com/
... CREDENTIALS=@{scapecreds}
... AUTH={"Authorization": "%{BASIC_AUTH}"}
... NODENAME=piri.ehrscape.com
... CONTROL=NONE
@{scapecreds} %{EHRSCAPE_USER} %{EHRSCAPE_PASSWORD}

Execute test against EHRSCAPE

The only difference in contrast to normal execution is that you now want to specify that EHRSCAPE configuration from suite_settings.robot should be used. This is done by setting SUT variable to EHRSCAPE which you can achieve by passing -v SUT:EHRSCAPE when calling robot. Check examples below.

Run all tests at one (not recommended)

This is not recommend because it may take from 30 to 60 minutes and makes it harder to analyse the results.

robot -v SUT:EHRSCAPE -e future -e circleci -e TODO -e obsolete -e libtest -d results -L TRACE --noncritical not-ready robot/

Run single test suites, one by one (recommended)

Execute the test suite that you are interested in by copy&pasting one of the lines below, then analyse the results of that test suite.

Best practice is also to reset your system under test to a clear state before executing the next test suite.

robot -v SUT:EHRSCAPE -d results/composition -e future -e circleci -e TODO -e obsolete -e libtest -L TRACE --noncritical not-ready --name COMPO robot/COMPOSITION_TESTS
robot -v SUT:EHRSCAPE -d results/contribution -e future -e circleci -e TODO -e obsolete -e libtest -L TRACE --noncritical not-ready --name CONTRI robot/CONTRIBUTION_TESTS
robot -v SUT:EHRSCAPE -d results/directory -e future -e circleci -e TODO -e obsolete -e libtest -L TRACE --noncritical not-ready --name FOLDER robot/DIRECTORY_TESTS
robot -v SUT:EHRSCAPE -d results/ehr_service -e future -e circleci -e TODO -e obsolete -e libtest -L TRACE --noncritical not-ready --name EHRSERVICE robot/EHR_SERVICE_TESTS
robot -v SUT:EHRSCAPE -d results/ehr_status -e future -e circleci -e TODO -e obsolete -e libtest -L TRACE --noncritical not-ready --name EHRSTATUS robot/EHR_STATUS_TESTS
robot -v SUT:EHRSCAPE -d results/knowledge -e future -e circleci -e TODO -e obsolete -e libtest -L TRACE --noncritical not-ready --name KNOWLEDGE robot/KNOWLEDGE_TESTS
robot -v SUT:EHRSCAPE -d results/aql_1 -e future -e circleci -e TODO -e obsolete -e libtest -L TRACE --noncritical not-ready --name "QUERY empty_db" -i empty_db robot/QUERY_SERVICE_TESTS
robot -v SUT:EHRSCAPE -d results/aql_2 -e future -e circleci -e TODO -e obsolete -e libtest -L TRACE --noncritical not-ready --name "QUERY SMOKE" -i SMOKE robot/QUERY_SERVICE_TESTS
robot -v SUT:EHRSCAPE -d results/aql_3 -e future -e circleci -e TODO -e obsolete -e libtest -L TRACE --noncritical not-ready --name "QUERY loaded_db" -i loaded_db robot/QUERY_SERVICE_TESTS

Execution Control - Test Suites & Tags

Execution of all integration tests takes about 30 minutes (on a fast dev machine). To avoid waiting for all results you can specify exactly which test-suite or even which subset of it you want to execute. There are seven test-suites to choose from by passing proper TAG to robot command via the --include (or short -i) option:

	TEST SUITE

	SUPER TAG

	SUB TAG(s)

	EXAMPLE(s)

	COMPOSITION_TESTS

	composition

	json, json1, json2,

 CI/CD

CI/CD

This part of the documentation describes how continuous integration helps us to have a fast feedback loop during development. This allows the project to keep up testing with the fast pace of iterations within the agile development environment (Scrum sprints).

Continuous Integration

EHRbase uses CircleCI [https://app.circleci.com/pipelines/github/ehrbase] for continuous integration and deployment. The CI pipeline consists of the following workflows:

Pipeline workflow 1/3 - build-and-test

	trigger: commit to any branch (except - release/v*, master, sync/, feature/sync/)

	
	jobs:

	
	build artifacts

	run unit tests

	run sdk integraiton tests

	run robot integration tests

	perform sonarcloud analysis and OWASP dependency check

Pipeline workflow 2/3 - release

	trigger: commit to release/v or master branch

	
	jobs:

	
	build artifacts

	run unit tests

	run sdk integraiton tests

	run robot integration tests

	perform sonarcloud analysis and OWASP dependency check

	TODO: deploy to Maven Central

	TODO: deploy to Docker Hub

Pipeline workflow 3/3 - synced-feature-check

⚠️ This is a special workflow to catch errors that can occur when code changes introduced to EHRbase AND openEHR_SDK repository are related in a way that they have to be tested together and otherwise can’t be catched in workflow 1 or 2.

	trigger: commit to sync/* branch

	
	jobs:

	
	pull, build, and test SDK from sync/* branch of openEHR_SDK repo

	build and test ehrbase (with SDK installed in previous step)

	start ehrbase server (from .jar packaged in previous step)

	run SDK’s (java) integration tests

	run EHRbase’s (robot) integration tests

HOW TO USE WORKFLOW 3/3
=======================

1. create TWO branches following the naming convention `sync/[issue-id]_some-desciption`
 in both repositories (EHRbase and openEHR_SDK) with exact the same name:

 - ehrbase repo --> i.e. sync/123_example-issue
 - openehr_sdk repo --> i.e. sync/123_example-issue

2. apply your code changes
3. push to openehr_sdk repo (NO CI will be triggered)
4. push to ehrbase repo (CI will trigger this workflow)
5. create TWO PRs (one in EHRbase, one in openEHR_SDK)
6. merge BOTH PRs considering below notes:
 - make sure both PRs are reviewed and ready to be merged
 at the same time!
 - make sure to sync both PRs with develop before merging!
 - MERGE BOTH PRs AT THE SAME TIME!

 RESTORE KEYCLOAK FROM PREVIOUSLY EXPORTED CONFIGURATION

RESTORE KEYCLOAK FROM PREVIOUSLY EXPORTED CONFIGURATION

(run all commands listed below from I_OAuth2_Keycloak folder)

	START KC W/ A MOUNTED VOLUME

docker run -d --name keycloak \
 -p 8081:8080 \
 -v $(pwd)/exported-keycloak-config:/restore-keycloak-config \
 -e KEYCLOAK_USER=admin \
 -e KEYCLOAK_PASSWORD=admin \
 jboss/keycloak:10.0.2

	RESTORE CONFIG FROM DIRECTORY

docker exec -it keycloak /opt/jboss/keycloak/bin/standalone.sh \
 -Djboss.socket.binding.port-offset=100 \
 -Dkeycloak.migration.action=import \
 -Dkeycloak.migration.provider=dir \
 -Dkeycloak.profile.feature.upload_scripts=enabled \
 -Dkeycloak.migration.dir=/restore-keycloak-config \
 -Dkeycloak.migration.strategy=OVERWRITE_EXISTING

When the import is complete use Ctrl-C to exit the session.

NOTE: This is a minimal setup using Keycloak’s embedded H2 DB which is just enough for testing.
It’s probably a good idea not to use this in production :)

If you ever have to reconfigure Keycloak Docker setup manually and to recreate the export
follow the steps below:

EXPORT COMPLETE KEYCLOAK CONFIGURATION

	START KC W/ A MOUNTED VOLUME

docker run -d --name keycloak \
-p 8081:8080 \
-v $(pwd)/exported-keycloak-config:/restore-keycloak-config \
-e KEYCLOAK_USER=admin \
-e KEYCLOAK_PASSWORD=admin \
jboss/keycloak:10.0.2

	LOGIN AS ADMIN AND CONFIGURE KC TO YOUR NEEDS

	
	create realm: ehrbase

	b) create client: ehrbase-robot
- IMPORTANT: make sure in client settings

	‘Access Type’ is set to public

	‘Direct Access Grants Enabled’ is set to ON

	
	create user: robot w/ password robot

	EXPORT CONFIGURATION INTO MULTIPLE FILES WITHIN A DIRECTORY

docker exec -it keycloak /opt/jboss/keycloak/bin/standalone.sh \
 -Djboss.socket.binding.port-offset=100 \
 -Dkeycloak.migration.action=export \
 -Dkeycloak.migration.provider=dir \
 -Dkeycloak.migration.dir=/opt/jboss/keycloak/export-dir \
 -Dkeycloak.migration.usersPerFile=1000 \
 -Dkeycloak.migration.strategy=OVERWRITE_EXISTING

When the export is complete use Ctrl-C to exit the session.
The export is complete when you see something like

Keycloak 10.0.2 (WildFly Core 11.1.1.Final) started in 11390ms -
Started 591 of 889 services (606 services are lazy, passive or on-demand)

	COPY EXPORTED CONFIGURATION FROM CONTAINER TO YOUR HOST

docker cp keycloak:/opt/jboss/keycloak/export-dir ./exported-keycloak-config

optional before copying check the folder exists and contains exported config files:

docker exec -it keycloak bash
ls /opt/jboss/keycloak/export-dir

Alternatively (and in case above steps stop to work for what ever reason) it is possible
to export complete KC configuration into a single JSON file:

	START KEYCLOAK W/ MOUNTED VOLUME

docker run -d --name keycloak \
 -p 8081:8080 \
 -v $(pwd):/workspace \
 -e KEYCLOAK_USER=admin \
 -e KEYCLOAK_PASSWORD=admin \
 jboss/keycloak:10.0.2

	EXPORT (SINGLE FILE)

Then export your database into a single JSON file:

docker exec -it keycloak /opt/jboss/keycloak/bin/standalone.sh \
 -Djboss.socket.binding.port-offset=100 \
 -Dkeycloak.migration.action=export \
 -Dkeycloak.migration.provider=singleFile \
 -Dkeycloak.migration.file=/workspace/exported-kc-config-single-file/keycloak-export.json
 -Dkeycloak.migration.strategy=OVERWRITE_EXISTING

	IMPORT FROM THE COMMAND LINE

Start with a blank canvas …

docker container stop keycloak
docker container rm keycloak

docker run -d --name keycloak \
 -p 8081:8080 \
 -v $(pwd):/workspace \
 -e KEYCLOAK_USER=admin \
 -e KEYCLOAK_PASSWORD=admin \
 jboss/keycloak:10.0.2

To import from a (previously exported) file into your database …

docker exec -it keycloak /opt/jboss/keycloak/bin/standalone.sh \
 -Djboss.socket.binding.port-offset=100 \
 -Dkeycloak.migration.action=import \
 -Dkeycloak.migration.provider=singleFile \
 -Dkeycloak.migration.file=/workspace/exported-kc-config-single-file/keycloak-export.json

When the import is complete use Ctrl-C to exit the session.

** WARNING **
DO NOT TRY TO RESTORE KEYCLOAK W/ `-e KEYCLOAK_IMPORT=/path-to/exported-config.json`
APPROACH AS DOCUMENTED ON KEYCLOAK'S DOCKER IMAGE DISCRIBTION ON DOCKER HUB.
///
//// THAT DOES NOT WORK! ////
///
DON'T WASTE YOUR TIME! I'VE BEEN THERE, I'VE DONE THAT!

 Build Image From Dockerfile

Build Image From Dockerfile

EHRbase’s Github repository contains a Dockerfile [https://github.com/ehrbase/ehrbase/blob/develop/Dockerfile] which you can use to build your custom Docker image from. Follow steps below to build your own Docker Image (with default EHRbase settings):

git clone https://github.com/ehrbase/ehrbase.git
cd ehrbase
docker build -t give-it-a-name . # don't foget the `.` at the end of the command!!!
docker image ls # you should be able to see the image you just created

Why To Build Own Image?

EHRbase’s Dockerfile defines some environent variables with default values which will be active when you run a container from created Docker image. For example when you run the following command

docker run ehrbase/ehrbase

the running Docker container will have environent variables with default values as shown in code snippet from related part of Dockerfile below:

...

ARG DB_URL=jdbc:postgresql://ehrdb:5432/ehrbase
ARG DB_USER="ehrbase"
ARG DB_PASS="ehrbase"
ARG SERVER_NODENAME=docker.ehrbase.org

ENV EHRBASE_VERSION=${EHRBASE_VERSION}
ENV DB_USER=$DB_USER
ENV DB_PASS=$DB_PASS
ENV DB_URL=$DB_URL
ENV SERVER_NODENAME=$SERVER_NODENAME
ENV SECURITY_AUTHTYPE="NONE"
...

The values of all ARG(s) can be overwritten during image build time to adjust default (run time) behaviour of your custom Docker image. Use –build-arg ARG_name=value to override default values when building your image. See example below:

docker build --build-arg DB_URL=your-db-url \
 --build-arg DB_USER=your-db-user \
 --build-arg DB_PASS=your-db-pass \
 --build-arg SERVER_NODENAME=your-system-name \
 -t give-your-image-a-name:and-tag .

In addition to overriding default ENV values during build time it is also possible to override ENV values and even add new ENVs to a container’s run time. Check next example (which assumes you pulled or created an image named ehrbase/ehrbase):

docker run -e DB_URL=jdbc:postgresql://ehrdb:5432/ehrbase \
 -e DB_USER=foouser \
 -e DB_PASS=foopass \
 -e SERVER_NODENAME=what.ever.org \
 ehrbase/ehrbase

 Docker environment examples

Docker environment examples

Here you can find some example settings for common use cases for the usage of EHRbase Docker
containers. You can also use the environent variables with the normal .jar execution by setting
the variables according to your operating system.

Use BASIC auth

Run the docker image with this setting:

docker run --network ehrbase-net --name ehrbase -e SECURITY_AUTHTYPE=BASIC \
-e SECURITY_AUTHUSER=myuser -e SECURITY_AUTHPASSWORD=ThePasswordForUser \
-e SECURITY_AUTHADMINUSER=myadmin -e SECURITY_AUTHADMINPASSWORD=SecretAdminPassword \
-d -p 8080:8080 ehrbase/ehrbase:latest

This will set the used authentication method to BASIC auth and all requests against the EHRbase
must be provided with the Authorization header set to Basic %username%:%password% whereas the
username and password must be encoded with base64.

Note

Ensure you use an encrypted connection over https otherwise the username and password can be
descripted easily

Use OAuth2

Run the docker image with this setting.

docker run --network ehrbase-net --name ehrbase -e SECURITY_AUTHTYPE=OAUTH \
-e SPRING_SECURITY_OAUTH2_RESOURCESERVER_JWT_ISSUERURI=https://keycloak.example.com/auth/realms/ehrbase \
-d -p 8080:8080 ehrbase/ehrbase:latest

You have to prepare the authentication server including a valid client at the target server to
get this setup run.

Use OAuth2 and Attribute-based Access Control

Run the docker image with this setting.

docker run --network ehrbase-net --name ehrbase
-e SECURITY_AUTHTYPE=OAUTH \
-e SPRING_SECURITY_OAUTH2_RESOURCESERVER_JWT_ISSUERURI=https://keycloak.example.com/auth/realms/ehrbase \
-e ABAC_ENABLED=true
-e ABAC_SERVER=http://localhost:3001/rest/v1/policy/execute/name/
-d -p 8080:8080 ehrbase/ehrbase:latest

Additionally, add the configuration of the endpoints and policies either here with additional -e parameters
or more user-friendly in a separate docker-compose.yml file.

 Run EHRbase in Docker

Run EHRbase in Docker

Note

Remember: EHRbase requires a properly configured and running PostgreSQL DB to work.
Make sure to set this up first before you try run EHRbase.

To run EHRbase in a Docker Container first pull the official Docker image from Docker Hub:

docker pull ehrbase/ehrbase

OR

build your own image form Dockerfile:

git clone https://github.com/ehrbase/ehrbase.git
cd ehrbase
docker build -t myehrbase/ehrbase .
docker image ls

THEN use the docker run command adjusting parameters to your needs to change Container’s default behaviour.

Note

Remember: Container’s default behaviour is set during Docker image build time.

docker run -e DB_URL=jdbc:postgresql://ehrdb:5432/ehrbase \
 -e DB_USER=foouser \
 -e DB_PASS=foopass \
 -e SERVER_NODENAME=what.ever.org \
 -p 8080:8080 \
 ehrbase/ehrbase

	Parameter

	Usage

	Example

	DB_URL

	Database URL. Must point to the running database server.

	jdbc:postgresql://ehrdb:5432/ehrbase

	DB_USER

	Database user configured for the ehr schema.

	ehrbase

	DB_PASS

	DB user password

	ehrbase

	SERVER_NODENAME

	Name of the server

	local.ehrbase.org

	SECURITY_AUTHTYPE

	HTTP security method

	BASIC / OAUTH

	SECURITY_AUTHUSER

	BASIC Auth username

	myuser

	SECURITY_AUTHPASSWORD

	BASIC Auth password

	myPassword432

	SECURITY_AUTHADMINUSER

	BASIC auth admin user

	myadmin

	SECURITY_AUTHADMINPASSWORD

	BASIC auth admin password

	mySuperAwesomePassword123

	ADMINAPI_ACTIVE

	Should admin endpoints be enabled

	true / false

	ADMINAPI_ALLOWDELETEALL

	Allow admin to delete all resources - i.e. all EHRs

	true / false

	MANAGEMENT_ENDPOINT_ENV_ENABLED

	Enable /management/env endpoint from actuator

	true / false

	MANAGEMENT_ENDPOINT_HEALTH_ENABLED

	Enable /management/health endpoint from actuator

	true / false

	MANAGEMENT_ENDPOINT_INFO_ENABLED

	Enable /management/info endpoint from actuator

	true / false

	MANAGEMENT_ENDPOINT_METRICS_ENABLED

	Enable /management/metrics endpoint from actuator

	true / false

	MANAGEMENT_ENDPOINT_PROMETHEUS_ENABLED

	Enable /management/prometheus endpoint from actuator

	true / false

	SERVER_DISABLESTRICTVALIDATION

	Disable strict validation of openEHR input

	true / false

Note

Do NOT set SPRING_SECURITY_OAUTH2_RESOURCESERVER_JWT_ISSUERURI in combination with SECURITY_AUTHTYPE=BASIC!
This will crash EHRbase at start up.

	Parameter

	Usage

	SPRING_SECURITY_OAUTH2_RESOURCESERVER_JWT_ISSUERURI

	OAuth2 server isuer uri

	example:

	https://keycloak.example.com/auth/realms/ehrbase

Run EHRbase + DB with Docker-Compose

Note

Prerequisite: docker-compose is installed on your machine

With Docker-Compose [https://github.com/docker/compose] you can start EHRbase and the required DB from a configuration file written in YAML format.

There is an example docker-compose.yml [https://github.com/ehrbase/ehrbase/blob/develop/docker-compose.yml] configuration file in our Git repository. Using it allows you to set up and start EHRbase along with the required database with a few simple steps:

download the docker-compose.yml file to your local
wget https://github.com/ehrbase/ehrbase/raw/develop/docker-compose.yml
wget https://github.com/ehrbase/ehrbase/raw/develop/.env.ehrbase
docker-compose up

OR: start both containers detached, without blocking the terminal
docker-compose up -d

Note

It is not necessary to have the whole Git repository on your machine, just copy the docker-compose.yml file to a local working directory and run docker-compose up.

Note

DB data is saved in ./.pgdata for easier access.

You can configure all environment variables via the file .env.ehrbase which is located at the same
folder as the docker-compose.yml file. This is also required for setting boolean values due to
Docker compose files do not allow setting boolean values directly inside docker-compose.yml.

 Build Image From Dockerfile

Build Image From Dockerfile

git clone https://github.com/ehrbase/docker.git
cd docker/dockerfiles
docker build -t ehrbase_db -f ehrbase-postgresql-full.dockerfile .
docker image ls

 Run DB with default parameters

Run DB with default parameters

docker pull ehrbase/ehrbase-postgres:11.10
docker run --name ehrdb -d -p 5432:5432 ehrbase/ehrbase-postgres:11.10

Customization

If you want to set specific parameters use environment variables provided with the -e option to the docker run command. This will be used to set the specific parameters for root postgres user password and ehrbase user and password. If not provided the default values will be used.

The following parameters can be set via -e option:

	Parameter

	Usage

	Default

	POSTGRES_PASSWORD

	Password for postgres

	postgres

	EHRBASE_USER

	ehrbase db username

	ehrbase

	EHRBASE_PASSWORD

	ehrbase db password

	ehrbase

 Overview

Overview

Warning

WIP

	openEHR

	REST

	AQL

	etc.

 Service Layer

Service Layer

Warning

WIP

General

The service layer of EHRbase is composed of …

openEHR Platform Abstract Service Model

Based on the openEHR Platform Abstract Service Model [https://specifications.openehr.org/releases/SM/latest/openehr_platform.html]
the following check list is build to give an overview and document the current
state.
Each service component has a table documenting the current state of

	implementation of the method itself, if applicable

	implementation and utilization of the pre checks of the method, if applicable

	implementation and utilization of the post checks of the method, if applicable

Services

	EHR

	EHR_STATUS

	DIRECTORY

	COMPOSITION

	CONTRIBUTION

EHR

For more details see
I_EHR_SERVICE [https://specifications.openehr.org/releases/SM/latest/openehr_platform.html#_i_ehr_service_interface]
in the official documentation.

	Method

	Implemented

	Pre

	Post

	has_ehr

	Yes

	/

	/

	has_ehr_for_subject

	I

	/

	/

	create_ehr

	C

	/

	No

	create_ehr_with_id

	C

	No

	No

	create_ehr_for_subject

	No

	/

	/

	create_ehr_for_subject_with_id

	No

	No

	/

	get_ehr

	No

	No

	/

	get_ehrs_for_subject

	No

	/

	/

	i_ehr

	No

	/

	/

Methods with I note are currently indirectly implemented. Their
functionality is available, but the general signature might
be different.

Methods with C note are currently combined in a more general createEhr
method.

EHR_STATUS

For more details see
I_EHR_STATUS [https://specifications.openehr.org/releases/SM/latest/openehr_platform.html#_i_ehr_status_interface]
the in official documentation.

	Method

	Implemented

	Pre

	Post

	has_ehr_status_version

	I

	Yes

	/

	get_ehr_status

	Yes

	Yes

	/

	get_ehr_status_at_time

	I

	Yes

	/

	set_ehr_queryable

	C

	No

	No

	set_ehr_modifiable

	C

	No

	No

	clear_ehr_queryable

	C

	No

	No

	clear_ehr_modifiable

	C

	No

	No

	update_other_details

	C

	/

	/

	get_ehr_status_at_version

	Yes

	Yes

	/

	get_versioned_ehr_status

	No

	No

	No

Methods with I note are currently indirectly implemented. Their
functionality is available, but the general signature might
be different.

Methods with C note are currently combined in a more general updateStatus
method.

DIRECTORY

For more details see
I_EHR_DIRECTORY [https://specifications.openehr.org/releases/SM/latest/openehr_platform.html#_i_ehr_directory_interface]
the in official documentation.

	Method

	Implemented

	Pre

	Post

	has_directory

	
	
	

	has_path

	
	
	

	create_directory

	
	
	

	get_directory

	
	
	

	get_directory_at_time

	
	
	

	update_directory

	
	
	

	delete_directory

	
	
	

	has_directory_version

	
	
	

	get_directory_at_version

	
	
	

	get_versioned_directory

	
	
	

COMPOSITION

For more details see
I_EHR_COMPOSITION [https://specifications.openehr.org/releases/SM/latest/openehr_platform.html#_i_ehr_composition_interface]
the in official documentation.

	Method

	Implemented

	Pre

	Post

	has_composition

	
	
	

	get_composition_latest

	
	
	

	get_composition_at_time

	
	
	

	get_composition_at_version

	
	
	

	get_versioned_composition

	
	
	

	create_composition

	
	
	

	update_composition

	
	
	

	delete_composition

	
	
	

CONTRIBUTION

For more details see
I_EHR_CONTRIBUTION [https://specifications.openehr.org/releases/SM/latest/openehr_platform.html#_i_ehr_contribution_interface]
the in official documentation.

	Method

	Implemented

	Pre

	Post

	has_contribution

	
	
	

	get_contribution

	
	
	

	commit_contribution

	
	
	

	list_contributions

	
	
	

	contribution_count

	
	
	

 New Contain Clause Resolution Strategy

New Contain Clause Resolution Strategy

	Chevalley 3.7.20

Backgroud

AQL specifies the important clause ‘CONTAINS’. This allows to specify a containment criteria on specified archetypes anywhere into composition projections. The specification is found in openEHR AQL containment [https://specifications.openehr.org/releases/QUERY/latest/AQL.html#_containment]. As mentioned in the specification, ‘CONTAINS’ specifies an hierarchical relationship with the Tree based data architecture (hence not to be confused with a WHERE clause criteria). Hierarchical constraint is modelized using connected and acyclic graph [https://en.wikipedia.org/wiki/Directed_acyclic_graph]; a node can be accessed from the root through a unique path.

Previous Approach

The previous strategy was based on maintaining a specific containment table based on a hierarchical data representation using PostgreSQL ltree [https://www.postgresql.org/docs/11/ltree.html]. The algorithm was based on identified AQL paths during the composition serialization: each path expression was then stored in a simplify way as to describe the hierarchy of archetypes within the composition, this for each composition. The table was then used to build the SQL expression corresponding to an AQL statement:

	identify the template(s) matching the contain clause

	retrieve the path for a given contain constraint for each identified template(s)

The resulting SQL expression is a combination (UNION) of SQL statement for each template.

An example of containment records is as follows:

CONTAINS COMPOSITION c CONTAINS OBSERVATION o [openEHR-EHR-OBSERVATION.pulse-oximetry.v1]

Is translated as

SELECT composition_id FROM ehr.contain WHERE label ~= '*.openEHR_EHR_OBSERVATION_pulse_oximetry_v1'

The template Id is then retrieve from the correlation between the composition entry (ehr.entry) and the template_id attribute. The same logic is used to retrieve the path of a particular node relatively to a template.

Although this approach was initially satisfactory, it has been seen as impacting performance whenever the number of records increases. As shown in the above example, the number of entries for a single composition can be significant and, in the lack of proper indexing, the identification of a template may require costly sequential search. Further, the construction of an SQL expression corresponding to an AQL CONTAINS clause was problematic. Another issue was that item_structure in /context/other_context was not referenced in containment and then was not resolved for querying.

New Approach

Assumptions

This approach assumes that all stored compositions are bound to one known template (at the time of this writing, operational template v1.4). A template is known whenever it is defined in the platform, it is stored in the DB in table ehr.template_store

Objectives

The new logic consists in resolving an AQL CONTAINS clause by:

	identifying the template(s) matching the constraints

	resolving the paths for the nodes defined in the CONTAINS clause

Identified templates are used to build the resulting SQL expression, each identified template produces a SQL query. At the end of the process, SQL queries are chained by a UNION clause.

Resolved paths are used to construct the json path expression used to query JSONB structure in the DB.

Technical Approach

Operational Template Traversal

All resolution are now based on so-called WebTemplates [https://www.ehrscape.com/reference.html#_template] (class OptVisitor) providing a tree construct detailing all constraints and attributes of an operational template. The tree structure is traversed using JsonPath expressions (see f.e. Baeldung’s guide [https://www.baeldung.com/guide-to-jayway-jsonpath] on this).

For instance, to check the existence of a node containment and return the corresponding AQL path, the following logic is illustrated as follows.

Assume we want to retrieve the template(s) where the following expression is satisfied:

contains COMPOSITION c[openEHR-EHR-COMPOSITION.report-result.v1] contains CLUSTER f [openEHR-EHR-CLUSTER.case_identification.v0]

The corresponding jsonpath expression to traverse the WebTemplate is:

$..[?(@.node_id == 'openEHR-EHR-COMPOSITION.report-result.v1')]..[?(@.node_id == 'openEHR-EHR-CLUSTER.case_identification.v0')]

When applied to template Virologischer Befund, the following structure is returned (these are the attributes for the retrieved node)

{
 "min" : "1",
 "aql_path" : "/context/other_context[at0001]/items[openEHR-EHR-CLUSTER.case_identification.v0]",
 "max" : "1",
 "children" : " size = 2",
 "name" : "Fallidentifikation",
 "description" : "Zur Erfassung von Details zur Identifikation eines Falls im Gesundheitswesen.",
 "id" : "fallidentifikation",
 "type" : "CLUSTER",
 "category" : "DATA_STRUCTURE",
 "node_id" : "openEHR-EHR-CLUSTER.case_identification.v0",
}

The corresponding AQL path for node openEHR-EHR-CLUSTER.case_identification.v0 in template Virologischer Befund is /context/other_context[at0001]/items[openEHR-EHR-CLUSTER.case_identification.v0]

The corresponding WebTemplate section for this particular node is represented as follows:

{
 "min": 1,
 "aql_path": "/context/other_context[at0001]/items[openEHR-EHR-CLUSTER.case_identification.v0]",
 "max": 1,
 "children": [
 {
 "min": 1,
 "aql_path": "/context/other_context[at0001]/items[openEHR-EHR-CLUSTER.case_identification.v0]/items[at0001]",
 "max": 1,
 "name": "Fall-Kennung",
 "description": "Der Bezeichner/die Kennung dieses Falls.",
 "id": "fall_kennung",
 "category": "ELEMENT",
 "type": "DV_TEXT",
 "constraints": [
 {
 "aql_path": "/context/other_context[at0001]/items[openEHR-EHR-CLUSTER.case_identification.v0]/items[at0001]/value",
 "mandatory_attributes": [
 {
 "name": "Value",
 "attribute": "value",
 "id": "value",
 "type": "STRING"
 }
],
 "attribute_name": "value",
 "constraint": {
 "occurrence": {
 "min": 1,
 "max_op": "\u003c\u003d",
 "min_op": "\u003e\u003d",
 "max": 1
 }
 },
 "type": "DV_TEXT"
 }
],
 "node_id": "at0001"
 },
 {
 "aql_path": "/context/other_context[at0001]/items[openEHR-EHR-CLUSTER.case_identification.v0]/items",
 "name": "Items",
 "attribute": "items",
 "id": "items",
 "occurrence": {
 "min": 1,
 "max_op": "\u003c\u003d",
 "min_op": "\u003e\u003d",
 "max": 1
 },
 "category": "ATTRIBUTE",
 "type": "ITEM"
 }In other terms, t
],
 "name": "Fallidentifikation",
 "description": "Zur Erfassung von Details zur Identifikation eines Falls im Gesundheitswesen.",
 "id": "fallidentifikation",
 "type": "CLUSTER",
 "category": "DATA_STRUCTURE",
 "node_id": "openEHR-EHR-CLUSTER.case_identification.v0"
},

Whenever the node_id is not specified, the jsonpath expression uses class names. For example the following AQL

SELECT location FROM EHR e CONTAINS COMPOSITION CONTAINS ADMIN_ENTRY CONTAINS location [openEHR-EHR-CLUSTER.location.v1]

Is translated as:

$..[?(@.type == 'COMPOSITION')]..[?(@.type == 'ADMIN_ENTRY')]..[?(@.node_id == 'openEHR-EHR-CLUSTER.location.v1')]

AQL Clause Interpretation

Contains clause interpretation consists in parsing the AQL expression (ANTLR) and create a corresponding list of propositions to evaluate.

The logic is based on the recursive traversal of the tree expression (AST [https://en.wikipedia.org/wiki/Abstract_syntax_tree]), from bottom left to the top of the tree, and create the template traversal query as well as the boolean validations if any if the expression contains logical operators (AND, OR, XOR …).

The evaluation does check first simple containment chains (CONTAINS…CONTAINS…CONTAINS…) using WebTemplate traversals described above, and then checks the logical propositions based on these.

Example

AQL expression:

select
m
from EHR e
contains (
 CLUSTER f[openEHR-EHR-CLUSTER.case_identification.v0] and
 CLUSTER z[openEHR-EHR-CLUSTER.specimen.v1] and
 CLUSTER j[openEHR-EHR-CLUSTER.laboratory_test_panel.v0]
 contains CLUSTER g[openEHR-EHR-CLUSTER.laboratory_test_analyte.v1])

The containments are evaluated with the following tree

[image:]
The containments are evaluated as follows:

	“CLUSTERf[openEHR-EHR-CLUSTER.case_identification.v0]” -

	“CLUSTERz[openEHR-EHR-CLUSTER.specimen.v1]”

	“CLUSTERg[openEHR-EHR-CLUSTER.laboratory_test_analyte.v1]” as in CLUSTER j[openEHR-EHR-CLUSTER.laboratory_test_panel.v0] contains CLUSTER g[openEHR-EHR-CLUSTER.laboratory_test_analyte.v1])

	“CLUSTERz[openEHR-EHR-CLUSTER.specimen.v1] and CLUSTERj[openEHR-EHR-CLUSTER.laboratory_test_panel.v0]containsCLUSTERg[openEHR-EHR-CLUSTER.laboratory_test_analyte.v1]”: check the INTERSECTION of the results from 2 AND 3 above

	“CLUSTERf[openEHR-EHR-CLUSTER.case_identification.v0] and CLUSTERz[openEHR-EHR-CLUSTER.specimen.v1]andCLUSTERj[openEHR-EHR-CLUSTER.laboratory_test_panel.v0]containsCLUSTERg[openEHR-EHR-CLUSTER.laboratory_test_analyte.v1]”: check the INTERSECTION of the results from 1 & 4

	“(CLUSTERf[openEHR-EHR-CLUSTER.case_identification.v0]andCLUSTERz[openEHR-EHR-CLUSTER.specimen.v1]andCLUSTERj[openEHR-EHR-CLUSTER.laboratory_test_panel.v0]containsCLUSTERg[openEHR-EHR-CLUSTER.laboratory_test_analyte.v1])”: same as 5 since it is enclosed in parenthesis.

If another operator is used: OR or XOR, then we apply UNION or DISJUNCTION respectively.

DB Changes

The two most significant changes are

	Deprecation of table ehr.containment. This table is now removed, as well as all logic associated to its population.

	New encoding of composition entry (item_structure)

The composition entry encoding (jsonb) has now the composition name encoded outside the json structure as a dv_coded_text (UDT) in table ehr.entry and removed from the archetype node id in the composition path.

This change is required since now the identified path is a generic AQL path without composition dependent values.

{
 "/name": [
 {
 "value": "Bericht"
 }
],
 "/$CLASS$": "Composition",
 "/composition[openEHR-EHR-COMPOSITION.report.v1 and name/value='Bericht']": {
 "/content[openEHR-EHR-OBSERVATION.blood_pressure.v2]": [
 {
 "/name": [
 {
 "value": "Blutdruck"
 }
],
 "/$CLASS$": "Observation"
}

The name/value attribute in the node id is now passed as an external attribute ‘name’ and the composition item_structure is encoded as

{
 "/name": [
 {
 "value": "Bericht"
 }
],
 "/$CLASS$": "Composition",
 "/composition[openEHR-EHR-COMPOSITION.report.v1]": {
 "/content[openEHR-EHR-OBSERVATION.blood_pressure.v2]": [
 {
 "/name": [
 {
 "value": "Blutdruck"
 }
],
 "/$CLASS$": "Observation
}

While name is

(Bericht,,,,)

Processing

The sequence of containment resolution is the following

[image:]

	Consists in parsing the AQL CONTAINS expression and build the propositions as described above.

	The propositions are evaluated as

	Simple containment chains using cached WebTemplates

	Computed boolean expressions based on the simple containment chains

Further Enhancements

	At this stage, ehr_status/other_details is not part of the contains resolution. The main issue here is that it is generally not associated to a valid template.

	There need to do more research for archetype_slots in a ANY type.

 }

 FhirObservationRespRateOpenehrRespRate.java

:code:`

package org.ehrbase.fhirbridge.mapping;

import ca.uhn.fhir.rest.server.exceptions.UnprocessableEntityException;
import com.nedap.archie.rm.generic.PartySelf;
import org.ehrbase.fhirbridge.opt.atemfrequenzcomposition.AtemfrequenzComposition;
import org.ehrbase.fhirbridge.opt.atemfrequenzcomposition.definition.AtemfrequenzObservation;
import org.ehrbase.fhirbridge.opt.shareddefinition.CategoryDefiningcode;
import org.ehrbase.fhirbridge.opt.shareddefinition.Language;
import org.ehrbase.fhirbridge.opt.shareddefinition.SettingDefiningcode;
import org.ehrbase.fhirbridge.opt.shareddefinition.Territory;
import org.hl7.fhir.r4.model.*;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.math.BigDecimal;

	/**

	
	FHIR 2 openEHR - respiration rate

*/

public class FhirObservationRespRateOpenehrRespRate {

private static final Logger logger = LoggerFactory.getLogger(FhirObservationRespRateOpenehrRespRate.class);

private FhirObservationRespRateOpenehrRespRate() {}

public static AtemfrequenzComposition map(Observation fhirObservation) {

AtemfrequenzComposition composition = new AtemfrequenzComposition();
AtemfrequenzObservation observation = new AtemfrequenzObservation();

// value quantity is expected
Quantity fhirValue = null;
BigDecimal fhirValueNumeric = null;
DateTimeType fhirEffectiveDateTime = null;

	try {

	fhirValue = fhirObservation.getValueQuantity();
fhirValueNumeric = fhirValue.getValue();
fhirEffectiveDateTime = fhirObservation.getEffectiveDateTimeType();
logger.debug(“Value numeric: {}”, fhirValueNumeric);

observation.setMesswertMagnitude(fhirValueNumeric.doubleValue());
observation.setMesswertUnits(fhirValue.getUnit());
observation.setTimeValue(fhirEffectiveDateTime.getValueAsCalendar().toZonedDateTime());
observation.setOriginValue(fhirEffectiveDateTime.getValueAsCalendar().toZonedDateTime()); // mandatory
observation.setLanguage(Language.DE); // FIXME: we need to grab the language from the template
observation.setSubject(new PartySelf());

	} catch (Exception e) {

	throw new UnprocessableEntityException(e.getMessage());

}

composition.setAtemfrequenz(observation);

// Required fields by API
composition.setLanguage(Language.DE); // FIXME: we need to grab the language from the template
composition.setLocation(“test”);
composition.setSettingDefiningcode(SettingDefiningcode.SECONDARY_MEDICAL_CARE);
composition.setTerritory(Territory.DE);
composition.setCategoryDefiningcode(CategoryDefiningcode.EVENT);
composition.setStartTimeValue(fhirEffectiveDateTime.getValueAsCalendar().toZonedDateTime());
composition.setComposer(new PartySelf()); // FIXME: id ausdenken oder weglassen?

return composition;

}

}

_images/management_health_example_response.png
“livenessstate™: {
"status": "UP"

_images/management_info_example_response.png
group

“application”,
"2020-12-14T15:59:15.0972",
“org. ehrbase. openehr™

_images/ehrbase_logo.png
» EHRbase

_images/management_env_example_response.png
"activeProfiles™: [
“local”

"name": "server.ports”,
“properties”: {

b
i
<
name": "servletContextInitParans”,
“properties”: {}
i
<

"name": "systemProperties”,
“properties”: {
"sun.desktop™: {
“value": "windows’

“sun. awt .windous .NTooLkit"

B
"java. specification.version”: {
“value": "11"

%

_images/management_metric_http_example_response.png
"name": "http.server.requests”,

"seconds”,
‘measurements”: [

"statistic™: "MAX",
"value": 0.9130664

"tag": "exception”,
"values": [
om0

i

“tag": "method”,
"values": [
~GET™

_images/management_metric_http_tag_example_response.png
‘name™: “http.server.requests”,
"baselnit
neasurements”: [

"seconds”,

<
"statistic™: "COUNT",
"value: 6.0
i
<
“statistic™: "TOTAL_TIVE",
"value": 0.524429
i
<
"statistic™!
"value™: 0.0
b
1
“availableTags™: [
<

"tag": "exception”,
"values": [
om0

_images/dockerhub_config_3.png
at conter mysal) Explore Repositories Organizations ~ GetHelp ~ ehrbase ~ (ﬁ)\

Repositories ehrbaseorg / ehrbase Builds Using 0 of 1 private repositories. Get more
General Tags Builds Timeline Collaborators ~ Webhooks ~ Settings
—_—
Configure Automated Builds
Build Activity
Overview of your build activity of the last 9 builds Queue M Success W Failed m Canceled

P

_images/dockerhub_config_4.png
Build configurations

SOURCE REPOSITORY © ehrbase x - ehrbase

NOTE: Changing source repository may affect existing bulld rules.

BUILD LOCATION Build on Docker Hub's infrastructure

AUTOTEST @ off
() Internal Pull Requests

(O Internal and External Pull Requests

REPOSITORY LINKS @ oft

O meeermsems0 | /Arelease/V([0-9.]+)$/

BUILDRULES +

‘The build rules below specify how to build your source into Docker sfages.

Source Type Source Dockef Tag Dockerfile Build @ Autobuild Build Caching
location Context

Dockerfile 7 -9 -9 (]
Dockerfile 7 -9 -9 (]
Dockerfile 7 -9 -9

~ View example build rules

Scenario Source Type source Docker Tag Matches Docker Tag Built
Exact match Branch master latest master latest

Match versions Tag 1NO91+S/ release-{sourceref} 120 release-1.2.0
Trailing modifiers Tag NO91+/ release-{sourceref} 12.01c release-1.2.0-rc

Extract version number Tag IN0-9.18/ version-(\1} vi23 version-12.3

_images/dockerhub_config_1.png
@zhvhasxI@Muzmx‘@Sﬂupx‘@mmmx‘.()nkx‘nwwwx‘ommx‘ommﬁgx‘ombhslx‘ormuwx‘Onwenx‘oehhasX‘+ -

< O B https//hub.docker.com/orgs/ehrbaseorg/settings/linked-accounts % x

Not syncin

ntent (Explore Repositorief Organizations\ GetHelp~ ehrbase

Organizations ~ ehrbaseorg Settings

ehrbaseorg

P eurise

2 Community Organization B EHRbase #§ hespsi//secure gravatar.com/avarar/05454964c568493c0180b2cc6Mb2f4a3 (D Joined September 4, 2019

Members Teams Repositories Settings Biling

General

Linked Accounts

Default Privacy

Linked Accounts

These account links are used for Automated Builds, so that Docker Hub can access your project lists and help you configure your Automated
Builds. Please note: A wb/Bitbucket account can only be connected to one Docker Hub account at a time.

Service user (or machine/bot account) suggested
Notifications Attaching your personal GitHub or Bitbucket account to this Docker Hub organization will allow other organization owners to create builds
from your private repositories. We suggest using a service user (also referred to as a machine user or bot account).

Deactivate Org

GitHub % _connect

Bitbucket ¥ connect

_images/dockerhub_config_2.png
2 User © Joined september 4, 2019

‘(f’;"ﬁ)\ ehrbase

General

@ Thisls the settings page for your user account. If you want to change your organization settings, navigate to the settings tab on the organization
Linked Accounts detalls page. View your organizations here.
Security

Default Privacy

Linked Accounts
Notifications
These account links are used for Automated Bullds, so that Docker Hub can access your project lists and help you configure your Automated
Convert Account Builds. Please note: A Github/Bitbucket account can only be connected to one Docker Hub account at a time.
Service user (or machine/bot account) suggested
Deactivate Account

Attaching your personal GitHub or Bitbucket account to this Docker Hub organization will allow other organization owners to create bullds from
your private repositories. We suggest using a service user (also referred to as a machine user or bot account).

GitHub ehrbase 4} []

Bitbucket [¥) W Connect

nav.xhtml

 Table of Contents

 		
 Welcome to the EHRbase documentation!

 		
 Release Notes

 		
 Getting Started

 		
 openEHR Introduction

 		
 Step 1: Data Models

 		
 Step 2: Upload a Template

 		
 Client Library

 		
 Step 3: Create an EHR

 		
 REST

 		
 Client Library

 		
 Step 4: Load Data

 		
 EHRBase Client Library

 		
 Flat Format

 		
 Development

 		
 Developing

 		
 Testing

 		
 EHRbase Integration Tests with Robot Framework <!– omit in toc –>

 		
 RESTORE KEYCLOAK FROM PREVIOUSLY EXPORTED CONFIGURATION

 		
 EXPORT COMPLETE KEYCLOAK CONFIGURATION

 		
 CI/CD

 		
 Deploying

 		
 Docker Images

 		
 EHRbase Docker Image

 		
 EHRbase DB Docker Image

 		
 Technical Documentation

 		
 Overview

 		
 Service Layer

 		
 New Contain Clause Resolution Strategy

 		
 Backgroud

 		
 Security

 		
 Admin API

 		
 Security

 		
 /admin/ehr

 		
 /admin/{:ehr_id}/composition

 		
 /admin/{:ehr_id}/contribution

 		
 /admin/{:ehr_id}/directory

 		
 /admin/template

 		
 Status and Metrics

 		
 Security

 		
 Usage

 		
 /management/env

 		
 /management/health

 		
 /management/info

 		
 /management/metrics

 		
 /management/prometheus

 		
 Attribute-based Access Control

 		
 Concept

 		
 Configuration

 		
 Detailed endpoint overview

 		
 SDK

 		
 Guides

 		
 SDK as dependency

 		
 Reference

 		
 Client module

 		
 Generator module

 		
 Load Testing

 		
 Testehr

 		
 Script execution

 		
 FHIR Bridge

 		
 Overview

 		
 Design decisions

 		
 Architecture Overview

 		
 Extensibility

 		
 Testing

 		
 Installation

 		
 Database for Audit Logs in FHIR Bridge

 		
 Do the mapping

 		
 Create new branch

 		
 Start docker

 		
 Build

 		
 IDE

 		
 Structure Definition (Enum)

 		
 Use the SDK generator to create new classes from the operational template

 		
 Use the SDK generator to create new classes from the operational template

 		
 Flows

 		
 ‘Create’ operation internal flow

 		
 ‘Search’ operation internal flow

 		
 ‘Read’ operation internal flow

 		
 Terminology Validation

 		
 Introduction

 		
 Configuration

 		
 Configuring EHRbase

 		
 Using provider with Two-Way SSL

_static/comment.png

_static/down.png

_static/down-pressed.png

_static/file.png

_images/webTemplate.png
webTemplate” :
templateld

name': "Vital signs

“localizedName': "Vital Signs’,

P

“localizedNames": {

OMPOSITION,
‘openEHR-EHR-COMPOSITION. encounter.v1',

b

Fody temperature’,

"name": 'Body temperature’,

“localizedNam

“aqlPath

.

“localizedNames": {

ody temperature"

"OBSERVATION",
"openEHR-EHR-OBSERVATION. body_temperature.vl®,

Yo /7 2 item

/content [openEHR-EHR-OBSERVATION . body_temperature.v1]"

Tany event™]

any

event”,
Any event”,

}o /1 2 item
/content (openEHR-EHR-OBSERVATION . body_temperature.v1]/data(at0002]/events(at0003]",

TCemperature”,

localizedName

Temperatuze",
‘Temperature
‘DV_QUANTITY",

at000.

localizedNames”: { .}, // 2 iten

T O
Type s "CODED TEXT"

_images/template_designer_overview.png
(G | 8 Archetypes - @~
523 composiion
% @ Adverse reaction st (11)
G @ Encounter (v1)
G @ Problemlist (11)
p @ Report (v2)
% @ Report (1)
© @ Result Report (v1)
&S entry
&3 obsenvation
9 @ *Oximetry(en) (/1)
9 @ *Respirations(en) (v1)
9 @ Apgar-Score (11)
9 @ Blood gas assessment (v1)
% @ Blutdruck (1)

oncept

(%)

9 @ Braden Scale (v1)

9 @ Demonstration (v1)

% @ Glasgow coma scale (11)

% @ GroBe/Lange (1)

9 @ Korpertemperatur (11)

9 @ MSFC-Wert (v1)

% @ Nine Hole Peg Test (1)

% @ Paced Auditory Serial Addition Test (1)
% @ Physical examination findings (1)
0 @ pulee (1)

[Properties - body_mass_index %

EE]

B Archetype 1d

Acchetypeld openEHR EHR-OBSERVATION.body_mass index|

B Location

Path Co\sers\Birger Desktop\deskNew folderlarche

B Metadata
Conceptpesarption
Misuse

Pupose “To record the Body Mass Index (41) of persor ¥

Archetypeld
“The ADL Archetype identifie fo ths archetype.

|28 Properties - body_mass_index | 1 Annotations | & Reference Model Attributes |

_static/ajax-loader.gif

_static/comment-close.png

_static/comment-bright.png

_images/openehr-what_is_it-architecture.png
Design-time Environment

Technical
formats.

Domai

modelers 0 & &

© 2018 openEHR Foundation

Runtime
injection

O 8 0§ vevelopers

['] peploy

Clinical
Users

& &

Iy
2% %

Runtime Environment

The model-driven openEHR technology ecosystem

_images/management_metrics_example_response.png
ikaricp. connections”,
“hikaricp. connections.acquire”,
“hikaricp. connections.active®,
“hikaricp. connections. creation”,
“hikaricp. connections.idle",
ikaricp. connections.max’
“hikaricp. connections.min",
“hikaricp. connections.pending”,
“hikaricp. connections. timeout”,
ikaricp. connections. usage",
“http.server.requests”,

“jdbe. connections .active”,
“jdbe. connections . idle”,
“jdbe . connections .max",

“Jdbe. connections.
jum. bufer. count™,
“Jum.buffer .memory . used"
“Jvm.buffer. total .capacity”,
“ju. classes. loaded",

“jvm. classes..unloaded"

jun. g Live. data. size”,
“jvm.gc.max.data.size",
“jvn. gc.memory .allocated”,

_images/template_designer.png
File View

L]

‘Ocean Template Designer - 2.8 Beta

F %

@

[New Templat

Edit Repository List...

Sample
Lokal
Desktop

pes - @

D cbsenvtion
D evaluston
D instructon
ascton

2 scmin_entry
asection
Dsructure
Dacluster

D eement

{2 Concept

nter (training sample) (1)

Properties - New Template
pe ol

(B3

EHE]

Keywords.
Uifecyck State
‘riginal Author
Other contributors.
] Template Identification

not set a
o

not set

not set

468a1315-2bb7-41b3-9890-82471c4d1
New Template

_images/parsetree.png
query

select1 from:2_<EOF>

seléct selectExpril from fromEHR:3 contains contalnsExpression

emnsgpany e contanExpressiongo2
containxprézsianBont 1 ana contasExpression
conins containExprézzianBoatd ana contamaEpression
simpleCizssExpr.2 conins contanExpressiongot
archetypedCiessexer simpleCizssExpr.2 contans
CLUSTER 7 1 apenEHR.£AR.CLUSTER case_identfcation i | archetypesClssExpr smpleCHTExr2 contains comtameEgpresson
CLUSTER £ [openEHR.EHR-CLUSTER specimen vl | archetypedClassExpr contanExpressiongot
CLUSTER | 1 apenEHR-EAR.CLUSTER Jaboratory_test panei 0 | contains

simpleClassExpr:2

archetypedClassExpr

CLUSTER o | openEHR-EHR-CLUSTER.laboratory test analyte.vl 1

_images/bulk.png
Dashboard |[O Find Resources || Bulk Export <

Bulk Export Archetypes as ZIP

Project incubator: [Al projectsfincubators &)
Reference model | All Classes v
dasses:

Created on or after:
Modified on or after:

[states

[/ © mitial / Predraft

%] Draft

] & Team review

[/ () Review suspended

[V @ Published

[/ © Reassess (Draft)

[/ @ Reassess (Team review)

[V] (@ Reassess (Review suspended)
] @ Rejected

] @ Deprecated

Revision
Get latest trunk revision (1

© Get latest published revision (1)

FoRmaT

® anL
XML

_images/ckm_main.png
< C @ openehrorg/cknm/

openEHR

Clinical Knowledge Manager Templates * Termsets " Release Sets * Projects * Reports ™ Help |
() Al Resources A [Dashboard |[,O Find Resources |

Subdomain: Al subdomains V]

Project/ Al projects ~

incubator: :|

@Active _Under review _ Published
Y ERg

¥ Archetypes
4 e archepes
» s Guster
> B compostion
® Element
2ty
» < action
» © Evauaton
» ® Obsenation
» =) instrcton
> £% admin
» € secion
¥ stuctre
» 14 Demographic odel Archetypes

s a registered user, you can particpate in the.
development of open and shared dinical content for
eHealth projects as part of the CKH community.
collaboration.

FIND OUT MORE »
GET INVOLVED »

Become a Part of Our Online Community

Register Today!

Tt only takes a minute
to get started.

Reg

What Do You Need to Know? News
¢) (2] o
Arch Templates Termsets Edmonton Symptom Ass
etypes empl erm: o = :
Published archetype
) <) G ommme
Wew archetype
Release sets Projects. Incubators
@© Fespirations
Deprecated archetype
FIND OUT MORE » °
Quick Search o

_images/RepositoryList.png
Knowledge Repositories

X

Reposttories:
e [hddNew |
psiep
[Fevetom]
Archetype Files:
[C:\Users\Public\Doouments\My Cinical Models\Sample] | - |
[|
Template Fies:

[Arepostory contaiing sample archetypes and
femplates

_images/bp_archetype.png
Q systolic

Q Diastolic

Q Mean arterial pressure
Q Pulse pressure

T Clinical interpretation

Blood pressure

T Mean arterial pressure formula

T Systolic pressure formula

1 24 hour average

_images/docker_1.jpg

_images/components.png
FHIR Bridge

O—cose—

«REST Interfaces
CDISC Provider

£]

«REST Interface»

CDISC 2 openEHR Mapper

Use

Use

Spring Boot Application

£]

Use,

O—rir—>

«REST Interfaces
FHIR Provider

<REST Interfaces

FHIR 2 0p